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a b s t r a c t

The primary impediment to the recovery of heavy oil lies in its high viscosity, which necessitates a
deeper understanding of the molecular mechanisms governing its dynamic behavior for enhanced oil
recovery. However, there remains a dearth of understanding regarding the complex molecular compo-
sition inherent to heavy oil. In this study, we employed high-resolution mass spectrometry in
conjunction with various chemical derivatization and ionization methods to obtain semi-quantitative
results of molecular group compositions of 35 heavy oils. The gradient boosting (GB) model has been
further used to acquire the feature importance rank (FIR). A feature is an independently observable
property of the observed object. Feature importance can measure the contribution of each input feature
to the model prediction result, indicate the degree of correlation between the feature and the target,
unveil which features are indicative of certain predictions. We have developed a framework for utilizing
physical insights into the impact of molecular group compositions on viscosity. The results of machine
learning (ML) conducted by GB show that the viscosity of heavy oils is primarily influenced by light
components, specifically small molecular hydrocarbons with low condensation degrees, as well as pe-
troleum acids composed of acidic oxygen groups and neutral nitrogen groups. Additionally, large mo-
lecular aromatic hydrocarbons and sulfoxides also play significant roles in determine the viscosity.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Heavy oil accounts for over 70% of global oil resources and is one
of the most important fossil energy sources in the future. However,
the exploitation of heavy oil poses aworldwide challenge to its high
viscosity (Guo et al., 2016; Santos et al., 2014). The development of
various recovery techniques has been undertaken to mitigate the
excessively high viscosity of heavy oils. It mainly includes hot in-
jection technologies such as steam flooding (Zhao et al., 2015) and
in situ combustion (Mahinpey et al., 2007), gas injection technol-
ogies (Sun et al., 2017) using natural gas, CO2 and N2 as injection
gases, and chemical agent injection technologies, such as catalysts
(Tang et al., 2019; Zhou et al., 2017), surfactant (Wang and Lai,
2019), alkalis (Zhang et al., 2016), nanoparticles (Anto et al.,
2020), and polymers (Zhang et al., 2021). However, these
y Elsevier B.V. on behalf of KeAi Co
technologies have inherent limitations, and heavy oil still possess
significant untapped potential development (Guo et al., 2016; Sun
et al., 2017; Zhao et al., 2013). Therefore, it is imperative to thor-
oughly investigate the factors contributing to high viscosity in or-
der to enhance the recovery of heavy oil.

The high viscosity of petroleum is generally attributed to the
significant role played by asphaltenes, which possesses the highest
polarity and molecular weight. Asphaltenes exhibit a remarkable
structural complexity originating from highly condensed aromatic
rings with alkyl moieties of different sizes and functional groups,
typically containing oxygen, nitrogen, sulfur, and metal elements.
The aggregation phenomenon arises due to the interaction be-
tween heteroatoms and aromatic rings (McKenna et al., 2019). Luo
and Gu (2007) prepared 11 reconstituted heavy oil samples by
adding precipitated asphaltenes into deasphalted heavy oils with
varying asphaltene contents. The study revealed that the viscosity
is significantly influenced by the state of asphaltene particles,
which undergo changes based on variations in asphaltene content
and temperature. Hasan and Shaw (2010) proposed that differences
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in the solubility of asphaltenes in different oils would change the
aggregation form of asphaltenes, which means low solubility of
asphaltenes would result in high viscosity of crude oil. However,
some studies (Ilyin and Strelets, 2018; Li et al., 2018a, 2018b) have
shown that crude oils with low asphaltene content can exhibit
extremely high viscosity as well. This suggests that the underlying
mechanism governing heavy oil viscosity cannot be comprehended
solely through composition property. Undoubtedly, the incorpora-
tion of asphaltene into crude oil will result in an increase in vis-
cosity. However, the difference in viscosity among different crude
oils does not solely depend on the asphaltene content, but essen-
tially relies on the composition and molecular interactions within
the crude oil, including p-p interaction of polycyclic aromatics,
hydrogen bonding between heteroatoms, acid-base interaction,
coordination interaction involving metals, as well as the inter-
twine of long-chain aliphatic and naphthenic hydrocarbons
(Alomair and Almusallam, 2013; Ghanavati et al., 2013; Larter et al.,
2008; Luo and Gu, 2007; Muraza, 2015; Zhu et al., 2004). Therefore,
a comprehensive analysis of the molecular composition of heavy oil
becomes imperative for elucidating the underlying mechanism
driving changes in viscosity.

It is difficult to quantitatively characterize such a complex sys-
tem contains billions of molecules (Beens and Brinkman, 2000),
hence most of the results are qualitative. Li et al. (2020) charac-
terized the molecular composition of a fluid catalytic cracking
decant oil using a high-resolution Orbitrap MS coupled with ESI
and APPI ionization sources. The authors provided a semi-
quantitative result of 7001 molecules of 20 class species. Li et al.
(2023) analyzed the molecular composition of heavy petroleum
fractions through high-resolution mass spectrometry. More than
5000 molecules were quantitatively characterized from four heavy
petroleum fractions. The accuracy of the analysis was acceptable
according to the H/C ratio comparation between that derived from
element analysis and the semi-quantitativemolecular composition.
High resolution mass spectrometry (HRMS) enables the identifi-
cation of thousands to tens of thousands of petroleum components
at a molecular scale (Hughey et al., 2002; Qian et al., 2001)
providing unparalleled analytical capabilities for characterization
complex mixtures. Although HRMS currently allows for only semi-
quantitative analysis of these molecules, it remains an important
method for investigating the molecular composition of heavy pe-
troleum. This study referred to Li's (Li et al., 2020) work to use high
resolution mass spectrometry to analyze compositions of heavy
oils. Different from the traditional classification method of SARA
group composition, this study quantitatively calculates the molec-
ular mass according to the ionization properties of the compounds
in the ionization source, and the obtained molecular group
composition has specific properties, so the classification is more
refined and more conducive to the study of viscosity mechanism.

Machine learning (ML) techniques are utilized to extract
actionable insights from big data generated from simulations, not
only from limited experimental data so that can greatly save time
and cost, make a transformative impact on chemical sciences.
Achieving this goal requires a fusion of computer science and
chemical science knowledge (Keith et al., 2021). The extent that ML
terms appear in scientific papers aligned by American Chemical
Society (ACS) technical divisions show that analytical division has
No. 2 occurrences in the last two decades. The combination of ML
and spectrometry characterization is the hotspot of spectrometry
data visualization (Keith et al., 2021). It is currently most widely
used in biochemistry, metabolomics, medicines and other related
fields (Liebal et al., 2020; Mortier et al., 2021; Mowbray et al., 2021;
van Oosten and Klein, 2020; Zien et al., 2009), but has relatively few
applications in petroleum chemistry field. Raljevi�c et al. (2021)
used statistical multi-way analysis and extensive ML multivariate
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linear regression methods to model crude oil stability in relation to
NMR spectra and other measured properties, such as aromaticity,
API gravity, percentage of aliphatic chains, asphaltene content and
relative diffusivities. Kirch et al. (2020) combined ML techniques
with classical molecular dynamics simulations (MD) to predict oil/
brine interfacial tensions (IFT). They built a consistent IFT data set
through MD simulations for gradient boosted (GB) algorithms ML
training. The obtained model had error 2% and 9% against MD and
experimental data from the literature, respectively.

In this study, the molecular composition of 35 heavy crude oils
from various oilfields in China was characterized semi-
quantitatively using high-resolution Orbitrap mass spectrometry.
Subsequently, the ML gradient boosting algorithmwas employed to
investigate the feature-importance ranking of elements, SARA
compositions, and molecular group compositions with respect to
the viscosity of heavy oils.

2. Experiment

2.1. Materials

Analytical grade n-hexane (n-C6), toluene, methanol carbon
tetrachloride (CCl4), acetonitrile (CH3CN), chloroform (CHCl3), and
tetrahydrofuran (THF) were obtained from Beijing Chemical Re-
agents Company, subjected to distillation for purification, and
stored in glass containers before use. Ruthenium trichloride (RuCl3)
was obtained from J&KChemical Ltd. Sodium periodate (NaIO4) and
potassium hydroxide (KOH) were purchased from Beijing Chemical
Reagents Company.

Silver tetrafluoroborate (AgBF4) and methyl iodide (CH3I) were
purchased from J&K Chemical, Ltd. A total of 35 heavy crude oils
were from Xinjiang, Shengli, Liaohe, and Henan oilfields in China.
The element composition and viscosity of each oil are shown in
Fig. 3.

2.2. Chemical and property analysis

The elemental analysis of carbon, hydrogen, sulfur, oxygen, and
nitrogen was performed according to ASTM D5291, ASTM D5453,
ASTM D5622, and ASTM D57621 methods, respectively.

The saturated and aromatic fractions were obtained by eluting
the adsorbed oil sample on the Al2O3 column with solvents n-C6
and toluene. The mass ratio of saturated fraction to aromatic frac-
tion was required for the semi-quantitative calculation.

The viscosity was determined by rotary viscometer according to
a Chinese standard method SY/T 0520e2008.

2.3. Semi-quantitative analysis of oils

The semi-quantitative analysis refers to the published work by
Li et al. (2020). A brief summary is as follows:

The polar compounds, including acidic oxygen-containing
compounds, neutral nitrogen-containing compounds, and basic
nitrogen-containing compounds were analyzed by ±ESI HRMS
directly. The aromatic hydrocarbons were analyzed by þAPPI
HRMS.

The saturated hydrocarbons were oxidized through ruthenium
ion-catalyzed oxidation (RICO) derivatization, converting saturated
hydrocarbons to monohydric alcohols, to ensure the response in
eESI HRMS (Zhou et al., 2012). Similarly, non-polar sulfur-con-
taining compounds were methylated with methyl iodide (CH3I) in
the presence of silver tetrafluoroborate (AgBF4), and the product
methyl-sulfonium was characterized through þ ESI HRMS (Muller
and Andersson, 2005; Shi et al., 2010).

The mass percentage of molecules in each oil sample was



Fig. 1. Contribution of composition to viscosity is obtained through ML and HRMS.

Fig. 2. Viscosity-temperature curves of representative heavy oils.
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calculated and normalized based on the mass peak intensity, the
mass ratio of the saturated and aromatic fractions, and the
elemental composition. Additionally, we mandatorily specify that
one-third of the total nitrogen is basic nitrogen.

2.4. Orbitrap MS analysis

The heavy crude oils, RICO derivatizations, and methylation
products were firstly dissolved in toluene (10 mg mL�1). Then they
were diluted with toluene/methanol (1:3, v/v) for eESI HRMS,
toluene/methanol (1:1, v/v) for þESI HRMS, and pure toluene
for þAPPI HRMS (0.02 mg mL�1), respectively. The MS character-
ization was carried out using an Orbitrap mass spectrometer
(Orbitrap Fusion, Thermo Scientific, USA). The test samples were
injected directly into the ESI through an injection pump. The ion
transfer tube temperature was 300 �C, and the vaporizer temper-
ature was 100 �C. The resolution was up to 500,000 at m/z 200 Da.
The ions in the range fromm/z 150 to m/z 1000 were recorded in a
0.5 min detection period. The sheath, auxiliary, and sweep gas flow
rates were 5.0, 2.0, 0.1 arbitrary units for ± ESI and 8.0, 3.0, 0.1
arbitrary units for þAPPI, respectively. The MS data analysis was
carried out using Thermo. Xcalibur Qual Browser software.

2.5. Modeling of viscosity-composition through machine learning

ML can be divided into four categories: supervised learning,
semi-supervised learning, unsupervised learning, and reinforce-
ment learning (Schmidt et al., 2019). Supervised learning is to train
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an optimal model based on the existing data set and the relation-
ship between the input (feature) and output (label). Supervised
learning tasks mainly include classification and regression. In this
process, the samples in the data set are called training samples, and
each sample has an input feature and corresponding label (classi-
fication task) or target value (regression task). Gradient boosting
algorithm, proposed by Friedman (2001), is a typical classification
algorithm. The basic principle is to train newly added weak learners
base on the negative gradient of the current model loss function, to
improve the accuracy and robustness of the final model, overcome
the shortcomings of existing weak learners through iteration and
reducing the bias (Konstantinov and Utkin, 2021). The loss function
is defined as the residual between the real results and ML
predictions.

Data split is a necessary step in ML models to evaluate predic-
tion accuracy by splitting data into training and test datasets. The
sample size for training and testing can be determined using the
learning curve approach (Pedregosa et al., 2011). The loss function
of ML models regarding the training data is minimized to improve
the prediction accuracy on training data.

The value of determination coefficient (R2, from 0 to 1) can be
used to assess how well a regression equation fits the observed
values, mathematically as follows:

R2 ¼ 1�

Pp

i¼1
ðyi � fiÞ2

Pp

i¼1
ðyi � yÞ2

where yi and fi represent the “real” results in the data set and the
predicted values from ML models, respectively; p is the number of
data points in the search space.

Hyperparameter optimization can improve the fitting ability of
the ML model. By changing the size of the training set, the corre-
sponding R2 score is obtained, and the optimal training set size, that
is, the largest R2 value, is selected to obtain the MLmodel with high
prediction accuracy.

The ML gradient boosting algorithms used in this study is
implementedwith the Scikit-Learn package using Python language.
The flow chart in this work is shown in Fig. 1. The temperature,
elements composition and molecular group composition are input
features.
3. Results and discussion

3.1. Viscosities and compositions of oils

Fig. 2 shows the viscosity variation with temperature of five
representative heavy oils from Xinjiang, Shengli, Liaohe, and Henan



Fig. 3. Box diagram of element composition and viscosity of 35 heavy oils.

Table 1
Elements compositions and hydrogen-to-carbon ratios of representative heavy oils.

Heavy oil C, wt% H, wt% O, wt% N, wt% S, wt% H/C

XJCF P601-188 85.78 11.87 1.89 0.25 0.22 1.66
SL T38-10 85.71 11.14 1.92 0.71 0.52 1.56
LH H70 86.21 11.02 1.88 0.58 0.30 1.53
HN Y2309 85.33 11.75 1.65 0.98 0.29 1.65
SL GD-01 83.58 10.92 1.53 0.62 3.35 1.57
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oilfields. The viscosities of 35 heavy oils range from 167 to
9951 mPa s at 50 �C. The viscosity decreases exponentially with
temperature, in accordance with the non-Newtonian fluidity law.

The organic elemental compositions and H/C of representative
heavy oils are shown in Table 1. Fig. 3 visually illustrates the dif-
ferences among 35 heavy oil samples. The large dispersion
observed in both element composition and viscosity data of heavy
oils indicates that the ML results obtained in this study hold
Fig. 4. Molecular group compositions of representative heavy oils (a) and the semi-quan

4449
universal applicability.
Fig. 4(a) shows the semi-quantitative molecular compositions of

five representative heavy oils of the 35 heavy oils. We firstly
calculate the content of each molecule through semi-quantitative
approach and then added together to obtain the molecular group
compositions. The types of molecular group compositions are
classified according to different HRMS characterization methods.
Each type of compound consists of hundreds of molecules. For
example, the saturated hydrocarbons in XJCF P601-188 account for
45% in Fig. 4(a), which is the sum of the content each saturate
molecule. Fig. 4(b) shows the composition of saturate molecules in
XJCF P601-188 oil. The horizontal coordinate is the number of
carbons, and the vertical coordinate is the number of hydrogens.
The colors, as shown in the illustration, represent the percentage of
the content of the molecule. The dot marked by the dotted line in
the figure corresponds to the carbon number of 29, the hydrogen
number of 46, and the content corresponding to the color is 0.69%,
that is the saturated hydrocarbon of molecular formula C29H46 in
titative molecular composition of saturated hydrocarbons of XJCF P601-188 oil (b).



Fig. 5. Correlations between element composition and viscosity.

Fig. 6. Correlations between group composition and viscosity.
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XJCF P601-188 oil accounts for 0.69 wt%.

3.2. Correlations between molecular composition and viscosity

Fig. 5 shows the feature importance of elements C, H, O, N and S
simulated by ML. The R2 is 0.83 illustrates that the model fits well.
The FIR represents the contribution of features to viscosity,
including both positive and negative contributions. The H element
exhibits the highest FIR among all the elements. Generally, the H/C
ratio serves as an indicator for assessing condensation degree and
determining whether the oil is light or heavy. In addition, our
findings indicate that heteroatoms exhibit a lesser contribution
compared to hydrogen, which has not been previously documented
in the existing literature Notably, nitrogen demonstrates the
highest contribution among heteroatoms, followed by oxygen and
sulfur. Heteroatoms predominantly reside within the heavier frac-
tions of crude oil, and their abundance can serve as an indicator of
crude oil quality. The viscosity of heavy oil is affected by the dilution
effect of light components, the p-p interaction of polycyclic aro-
matic hydrocarbons, and the interaction between heteroatomic
compounds (acid-base interaction, hydrogen bond interaction,
etc.); however, their respective contributions remain unclear. This
conclusion indicates that the impact of dilution and the degree of
molecular condensation outweighs the influence of interaction
among heteroatomic compounds.

Fig. 6 shows the correlations between group composition and
viscosity. Viscosity of heavy oil essentially depends on intermo-
lecular interaction. In this study, the molecules are divided into
different groups according to their responses in different ionization
sources. It ensures that each group of molecules has similar
chemical properties, similar intermolecular interaction mecha-
nisms, so as to similar contributions to viscosity. SH, AH, AO, S, NN
and BN represents to saturated hydrocarbons, aromatic hydrocar-
bons, acidic oxygen-containing compounds, sulfur-containing
compounds, neutral nitrogen-containing compounds and basic
nitrogen-containing compounds, respectively. Compared with the
correlations of element composition, the only difference in group
composition's contribution to viscosity is sulfur-containing com-
pounds. Element S contributes less than O, while sulfur-containing
compounds contribute more than acidic oxygen-containing com-
pounds. Part of the contribution of sulfur compounds comes from
sulfide, and the other parts come from multi-heteroatomic com-
pounds containing both sulfur and oxygen. Methylation reagents
also react with these compounds, and they are classified into sulfur-
containing compounds. A part of the contribution of oxygen is
transferred to the sulfur-containing compounds, making the sulfur-
containing compounds contribute more. Saturated and aromatic
hydrocarbons, entirely composed of H and C, contribute the first
and second, respectively. Among heteroatomic compounds, nitro-
gen compounds contribute the most, the same as N element. The
contribution of neutral nitrogen-containing compounds (such as
pyrrole compounds) is greater than that of basic nitrogen-
containing compounds (such as pyridines).

Our previous study showed that the separation or addition of
petroleum acid could significantly reduce or increase the viscosity
of heavy oil (Zhao et al., 2023). In this study, AO and NN ionized in
eESI ionization source both showed acidity. The sum of their
feature importance to viscosity is much greater than that of other
compounds, indicating that petroleum acids are the most impor-
tant factors in viscosity of heavy oil.

To further study the correlations between specific substances
and viscosity in each group, the molecules of each group were
classified according to their carbon number or heteroatomic
composition. The correlations were showed in Fig. 7. The feature
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importance of each groupwas calculated separately, and the results
were independent of each other. In Fig. 7(a), the saturated hydro-
carbons with carbon numbers between 20 and 30 contribute more
to the viscosity. The impact of saturated hydrocarbon with a low
carbon number on viscosity is higher than that with a high carbon
number. The conclusion is different from that of aromatic hydro-
carbons. Aromatic hydrocarbons with carbon numbers less than 20
and more than 50 contribute more, as shown in Fig. 7(b). The
saturated hydrocarbons with carbon number less than 40 and the
aromatic hydrocarbons with carbon number less than 20 are nat-
ural light components in heavy oil. According to Figs. 6 and 7(a) and
(b), light components are especially critical for viscosity. It is true
that the content of asphaltene has a great influence on the viscosity.
In our forthcoming work, however, we find that in sufficient
amounts of light components, the aggregation of asphaltenes is
inhibited and the effect on viscosity is negligible. This is due to the
dilution and dispersion of the light component, so that the viscosity



Fig. 7. Correlations between viscosity and carbon number of saturated hydrocarbons (a), carbon number of aromatic hydrocarbons (b), heteroatomic composition of acidic oxygen-
containing compounds (c), heteroatomic composition of sulfur-containing compounds (d), heteroatomic composition of neutral nitrogen-containing compounds (e), heteroatomic
composition of basic nitrogen-containing compounds (f).
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is close to the light component, and the viscosity of the asphaltene
is no longer a decisive factor. This echoes the conclusion of this
study that light components are one of the most important factors
affecting the viscosity of heavy oil.

For heteroatomic compounds, oxygen is an important factor. In
Fig. 7(c), as the oxygen number increases, the feature importance
increases. Oxygen also plays an important role in other groups,
especially in sulfur-containing compounds (Fig. 7(d)) and neutral
nitrogen-containing compounds (Fig. 7(e)). Poly-sulfur containing
compounds contribute little to viscosity compared with mono-
sulfur containing compounds (Fig. 7(d)). The nitrogen atoms in
basic nitrogen-containing compounds are just the opposite, with
compounds containing two nitrogen atoms contributing more than
one nitrogen (Fig. 7(f)).

The SO class compounds in Fig. 7(d) ionized in the þESI ioni-
zation source in oils are generally considered to be mainly sulfox-
ides. The thionyl functional groups (>S]O) contained are highly
polar and can generate large intermolecular forces, so their
contribution to viscosity is much greater than that of sulfide con-
taining only S element.
4. Conclusion

35 heavy oils from different sources were semi-quantitatively
characterized by Orbitrap high-resolution mass spectrometry. ML
performed the correlation analysis between semi-quantitative
molecular group compositions and viscosity data. The determina-
tion coefficients of the model are greater than 0.83, indicating that
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the ML model in this study has a high accuracy.
We find that the order of feature importance of elements to

heavy oil viscosity is: H > N > C > O > S, and the order of feature
importance of different molecular group compounds is: saturated
hydrocarbons > aromatics hydrocarbons > sulfur-containing
compounds > acidic oxygen-containing compounds > neutral
nitrogen-containing compounds > basic nitrogen-containing
compounds. The viscosity contribution of basic nitrogen-
containing compounds, sulfur-containing compounds and neutral
nitrogen-containing compounds is partly due to the oxygen-
containing poly-heteroatomic compounds in them. The light
components (include the saturated hydrocarbons with carbon
number<30 and the aromatic hydrocarbons with carbon num-
ber<20) and the petroleum acids are first two most important
compositional factors to viscosity of heavy oil. The aromatic hy-
drocarbons with high carbon number and the sulfoxides are also
important.

Viscosity is an inherent property of heavy oils, resulting from
interactions between heteroatomic compounds. However, we
found that the contribution of light components to viscosity is
greater than that of heteroatomic compounds, and light compo-
nents are important factors determining the viscosity of heavy oil.
This discovery can provide guidance for viscosity reduction of
heavy oil, and increase the content of light components by a series
of physical and chemical methods, such as: direct injection of light
components into heavy oil, adding modifier or injecting energy to
produce light components, etc., to improve heavy oil recovery. At
the same time, in view of the great contribution of petroleum acid
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and sulfoxides to viscosity, the development of targeted viscosity
reducing agents can also effectively reduce the viscosity of heavy
oil.

The process of semi-quantitative analysis of molecular compo-
sition is very complicated. A single heavy oil sample needs to be
pretreated 5 times and analyzed by high-resolution mass spec-
trometry, and then integratedwith quantitative algorithm to obtain
the results of semi-quantitative analysis of molecular composition.
The amount of work here is enormous, so in this study, only 35
heavy oil samples are treated this way. More samples will be
analyzed in our future work.
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