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a b s t r a c t

To achieve carbon dioxide (CO2) storage through enhanced oil recovery, accurate forecasting of CO2

subsurface storage and cumulative oil production is essential. This study develops hybrid predictive
models for the determination of CO2 storage mass and cumulative oil production in unconventional
reservoirs. It does so with two multi-layer perceptron neural networks (MLPNN) and a least-squares
support vector machine (LSSVM), hybridized with grey wolf optimization (GWO) and/or particle
swarm optimization (PSO). Large, simulated datasets were divided into training (70%) and testing (30%)
groups, with normalization applied to both groups. Mahalanobis distance identifies/eliminates outliers in
the training subset only. A non-dominated sorting genetic algorithm (NSGA-II) combined with LSSVM
selected seven influential features from the nine available input parameters: reservoir depth, porosity,
permeability, thickness, bottom-hole pressure, area, CO2 injection rate, residual oil saturation to gas
flooding, and residual oil saturation to water flooding. Predictive models were developed and tested,
with performance evaluated with an overfitting index (OFI), scoring analysis, and partial dependence
plots (PDP), during training and independent testing to enhance model focus and effectiveness. The
LSSVM-GWO model generated the lowest root mean square error (RMSE) values (0.4052 MMT for CO2

storage and 9.7392 MMbbl for cumulative oil production) in the training group. That trained model also
exhibited excellent generalization and minimal overfitting when applied to the testing group (RMSE of
0.6224 MMT for CO2 storage and 12.5143 MMbbl for cumulative oil production). PDP analysis revealed
that the input features “area” and “porosity” had the most influence on the LSSVM-GWO model's pre-
diction performance. This paper presents a new hybrid modeling approach that achieves accurate
forecasting of CO2 subsurface storage and cumulative oil production. It also establishes a new standard
for such forecasting, which can lead to the development of more effective and sustainable solutions for
oil recovery.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

The current state of the global energy sector is at a pivotal point,
characterized by the urgent requirement to balance the escalating
demand for energy resources with the imperative for environ-
mental sustainability (Lin and Tan, 2021). Within this particular
setting, the utilization of carbon capture and storage for enhanced
oil recovery (CCS-EOR) arises as a multifaceted strategy that serves
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Nomenclature

g Regularization parameter
f($) Feature map
s Radial basis function width
ai Lagrangian factor
a20-index An index that provides insights into the

concentration of data points around the Y¼ X line
ARE Average relative error
ARDExp Automatic relevance determination (ARD)

exponential kernel function
ARDRQ ARD rational quadratic kernel function
BHP Bottom hole pressure
CCS Carbon capture and storage
CO2 Carbon dioxide
C Regularization parameter
CMG-GEM Computer modeling group's greenhouse emissions

model greenhouse emissions model software
Err Prediction error
EOR Enhanced oil recovery
Exp Exponential kernel function
GPR Gaussian process regression
GLSAU Goldsmith-Landreth San Andres Unit
GWO Grey wolf optimization
InjRate Injection rate
Kr Relative permeability
Krg Gas relative permeability
Krog Oilegas relative permeability
Krow Watereoil relative permeability
Krw Water relative permeability
KKT Karush-Kuhn-Tucker
Lin Linear kernel function
LHS Latin hypercube sampling
LSSVM Least square support vector machine
MD Mahalanobis distance
ML Machine learning
MLP Multi-layer perceptron
MLPNN Multi-layer perceptron neural network
MMbbl One million barrels
MMT One million metric tonnes
NSGA Non-dominated sorting genetic algorithm
OFI Over-fitting index
Pb The best personal position
PDP Partial dependent plot
Perm Permeability
PI Performance index
PIts PI for test subset
PItr PI for train subset
Poly Polynomial kernel function
Por Porosity
PSO Particle swarm optimization
R Correlation coefficient
R2 Coefficient of determination

RE Relative error
RBF Radial basis function
RQ Rational quadratic kernel function
RMSE Root mean square error
RMSEts RMSE for test subset
RMSEtr RMSE for train subset
RRMSE Relative root mean square error
Sg Gas saturation
Sw Water saturation
SE Squared exponential kernel function
SHAP Shapley additive explanation
Sorg Residual oil saturation associated with gas flooding
Sorw Residual oil saturation associated with water

flooding
T Transpose
TPpredictedi

Predicted value of target parameter for ith data point
TPsimulatedi

Simulated value of target parameter for ith data
point

trainbr Bayesian regularization backpropagation training
algorithm

trainbfg BFGS quasi-Newton training algorithm
traincgb Conjugate gradient with Powell/Beale restarts

training algorithm
trainlm Levenberg-Marquardt training algorithm
trainrp Resilient backpropagation training algorithm
trainscg Scaled conjugate gradient training algorithm
Vi Velocity of ith particle
Vmax Maximum velocity
Vmin Minimum velocity
wp Weight for pth neuron in the MLP hidden layer
WAG Water alternating gas
X Feature value
Xmax Maximum value of a feature
Xmin Minimum value of a feature
Xnorm Normalized value of feature in the range of 0e1
yp Output of pth neuron in the hidden layer of MLP
Z The total number of data points
Zts Number of data points for test dataset
Ztr Number of data points for train dataset
b Constant value
bp Bias for pth neuron in the MLP hidden layer
c1 Cognitive coefficient
c2 Social coefficient
e Error
f Activation function
Gb The best global position
k(xi,x) Kernel function
m20 Count of data points with a measured-to-predicted

value ratio between 0.8 and 1.2
r1, r2 Random numbers within the range of 0 and 1
t Current iteration in the PSO algorithm
xi Input signal in MLPNN, position in PSO algorithm
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to augment the process of oil recovery while concurrently pre-
venting substantial quantities of carbon emissions (Zhang and Lau,
2022). Ren and Duncan (2019) conducted the impact of injection
techniques and reservoir heterogeneities on the performance of
carbon dioxide (CO2) sequestration in 11 sub-volumes of the San
Andres Formation in West Texas. Their study discovered that res-
ervoirs could attain greater CO2 retention fractions by utilizing a
combination of inverted five-spot well designs and large water
297
alternating gas (WAG) ratios. This finding offers valuable insights
for future projects involving the storage of CO2 linked with
enhanced oil recovery (EOR) in carbonate sequences. Wang et al.
(2020) examined the effects of CO2 flooding in glutenite reser-
voirs, with a specific emphasis on the influential elements of well
designs and optimum injection procedures. Their findings sug-
gested that the reservoir was efficiently constructed, resulting in
excellent recovery efficiency. Furthermore, the displacement of CO2



S. Davoodi, H.V. Thanh, D.A. Wood et al. Petroleum Science 22 (2025) 296e323
remained more evenly distributed, resulting in a wider range of
sweeping and improving the entire effectiveness. Al-Mudhafar
(2019) developed a proxy model for the prediction of CO2-EOR in
shale oil reservoirs.

1.1. Current state of research in CO2-EOR and storage

The prediction of CO2 storage and the total amount of oil pro-
duced over time is a significant field of study because of its potential
influence on efforts to mitigate climate change and EOR. By inte-
grating these processes, it is possible to decrease the levels of
ambient CO2 and enhance the extraction of oil from current reserves.

Contemporary studies of predictive modeling for CO2 storage
utilize several computational methodologies, such as reservoir
simulation, machine learning (ML), and geostatistical methods.
Reservoir simulation models, including ECLIPSE, CMG, and
TOUGH2, are extensively employed to forecast the capacity of CO2
storage. These models integrate geological data, fluid properties,
and reservoir characteristics to simulate the behavior of CO2 in
underground environments (Ajayi et al., 2019; Liu et al., 2022; Ren
et al., 2016). ML methods, such as neural networks, support vector
machines, and random forests, have demonstrated potential in
improving the accuracy of CO2 storage predictions. These algo-
rithms are applied to large datasets to identify patterns and
enhance predictive abilities (Al-Shargabi et al., 2022; Vo Thanh
et al., 2019, 2022). Furthermore, geostatistical techniques such as
kriging and stochastic simulation are used to analyze the spatial
variability and uncertainty in geological formations. Thesemethods
help evaluate reservoir heterogeneity and the risk of potential CO2
leakage (Dai et al., 2020; Li and Zhang, 2014; Liberty et al., 2022).

CO2-EOR is a technology that has the dual benefit of increasing
oil recovery and simultaneously storing CO2. The amount of oil
produced in CO2-EOR operations is influenced by reservoir features,
injection tactics, and the availability of CO2. Studies have shown
that reservoirs with greater porosity and permeability are better
suited for CO2-EOR. Additionally, the presence of natural fractures
can improve the effectiveness of CO2 injection (Alvarado and
Manrique, 2010; Le Van and Chon, 2017).

It is essential to optimize injection tactics, such as continuous
CO2 injection, WAG injection, and hybrid methods, in order to
maximize the total amount of oil produced over time (Al-
Khdheeawi et al., 2017; Chen et al., 2010; Nait Amar et al., 2021).
The accessibility and quality of CO2 sources have a significant in-
fluence on the practicality and cost-efficiency of CO2-EOR projects.
Research indicates that utilizing anthropogenic CO2 from industrial
sources can contribute to sustainability (Chen et al., 2020;
Mudhafar et al., 2019; Ruprecht et al., 2014).

Technical, economic, and environmental variables have an
impact on the effectiveness of CO2 storage and EOR projects. The
main technical difficulties involve understanding the reservoir,
detecting the movement of CO2, and tracking its migration. Recent
advancements in seismic imaging and tracer technology have
enhanced the ability to monitor and regulate CO2 movements
within subsurface reservoirs (Ajayi et al., 2019; Lumley, 2010;
Susanto et al., 2016). The economic feasibility of CO2-EOR projects
relies on factors such as oil prices, expenses associated with CO2

capture and transportation, and regulatory incentives. This em-
phasizes the importance of having a supportive regulatory frame-
work and carbon pricing mechanisms in place to encourage
widespread adoption of these projects (Lipponen et al., 2011).
Although CO2-EOR provides environmental advantages by
decreasing atmospheric CO2 levels, there are still issues regarding
the possibility of leakage and the long-term stability of CO2 storage.
Current research endeavors to evaluate the enduring soundness of
subsurface CO2 storage locations and establish optimal strategies
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for minimizing potential hazards (Alves and Lima, 2021; Wilday
et al., 2011).

Several research studies have specifically examined the envi-
ronmental effects of CO2-EOR, with a special emphasis on the
possibility of induced seismic activity and contamination of
groundwater (Balch andMcPherson, 2016; Han et al., 2010). Studies
suggest that careful selection and monitoring of subsurface reser-
voirs can reduce these hazards, guaranteeing that CO2-EOR con-
tinues to be a secure and feasible choice for both enhanced oil
recovery and carbon sequestration (Dai et al., 2014b; Ma et al.,
2019).

1.2. Machine learning for CCS-EOR

However, one of the key challenges that has been a persistent
issue in the field of CCS-EOR is the significant computational time
required to build and evaluate reliable reservoir models
(Shahkarami and Mohaghegh, 2020). The intricacy of unconven-
tional residual oil zones poses particular challenges to the accurate
simulation of fluid reservoir behavior, which is crucial for the
comprehensive understanding of how CCS-EOR works in such
reservoirs (Al-Mudhafar et al., 2022). The specific constraints posed
by these reservoirs, which are characterized by complex geological
formations with low permeability, require innovative solutions
(Chen and Reynolds, 2015).

Customized ML techniques offer a fast and effective way to
address these challenges (Lee, 2020). ML has the potential to
address the challenge of comprehending and managing intricate
reservoir dynamics by extracting valuable insights from extensive
datasets (Bahrami and James, 2023). ML can be applied to CCS-EOR
in various ways, including supervised learning, unsupervised
learning, and reinforcement learning, each offer distinct insights
(Yao et al., 2023). Unconventional CCS-EOR reservoirs under
consideration exhibit substantial geological complexity, as they are
characterized by substantial natural fracturing, faulting, and rock
heterogeneity. This complexity introduces an additional level of
intricacy to the dynamics of fluid flow (Xu et al., 2017).

Fluid-flow simulations are required to optimize CO2 injection
and improve oil recovery, particularly in unconventional reservoirs
(Dai et al., 2014a). The intricacy of this complexity arises from the
numerous interactions that occur throughout multiple phases,
hence presenting a formidable challenge in developing correct
predictions (Dang et al., 2015). The precise characterization of un-
conventional reservoirs is essential for determining their CCS-EOR
effectiveness. Accurate comprehension of the spatial arrangements
and distributions of geological characteristics within the reservoir
is required (Chen and Pawar, 2018). To navigate these complexities,
ML needs to be customized to process and interpret the wide range
of geological and geophysical data available, enabling a compre-
hensive understanding of specific unconventional reservoirs (Chen
and Pawar, 2019a).

Fluid-flow simulations can be evaluated with ML models of
historical data from multiple reservoirs and simulations of them.
This approach enables the development of reliable predictions that
can be utilized to optimize strategies for CO2 injection and enhance
the recovery of oil resources (VoThanh et al., 2020). The integration
of geological variables, rockefluid interactions, and well operations
with customized ML can effectively enhance the accuracy of pre-
dicting the performance of CO2-EOR and storage (You et al., 2020),
which is the focus of this study. The ML algorithms customized for
this purpose are multilayer perceptron (MLP) and least-squares
support-vector machines (LSSVM), each coupled with a grey wolf
optimizer (GWO) and particle swarm optimization (PSO) to develop
hybrid customized LSSVM-GWO, LSSVM-PSO, MLP-GWO, and MLP-
PSO models.



Fig. 1. Workflow summary of applied methods.

Fig. 2. Nine potential input features considered by the ML models.
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The MLP (a type of artificial neural network) offers a well-
developed ML method widely applied to CO2 studies. These
include CO2 solubility in brine (Amar et al., 2019), estimating the
thermal conductivity of CO2 for CCS (Nait Amar et al., 2020), and
modeling the viscosity of N2-CO2 mixtures (Naghizadeh et al.,
2022). LSSVM regression models have also been widely applied to
CO2-related studies, including the prediction of CO2 flooding per-
formance in oil reservoirs (Ahmadi et al., 2018), the prediction of
related CO2 emissions from the oil and gas industry (Zhao et al.,
2018), and the prediction of CO2 trapping capacity in deep saline
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aquifers (Davoodi et al., 2023).
The GWO draws its inspiration from the social behavior of grey

wolves (Duan and Yu, 2023). This optimizer has been combined
withMLPs (MLP-GWO) to predict petrophysical changes during CO2
injection in coal seams (Yan et al., 2020), and to predict oil pro-
duction performance based on reservoir simulation (Ng and
Jahanbani Ghahfarokhi, 2022). It has also been adopted for pre-
dicting the oil recovery factor during the WAG EOR process for
reservoir simulations (Nait Amar et al., 2021). MLP-GWO is, there-
fore, a suitable candidate to customize for the prediction of oil



Fig. 3. A schematic representation of the reservoir simulation model employed.
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production and CO2 storage performance in unconventional
formations.

Combining MLP with PSO is an alternative way to enhance the
selection of its control parameters. This method has been applied to
predict CO2-brine solutions (Amar et al., 2019), CO2 solubility in
water at high-temperature, high-pressure conditions (Hemmati-
Sarapardeh et al., 2020), and oil production performance in shale
oil reservoirs (Al-mudhafar, 2019). MLP-PSO is also a suitable
candidate to customize for CCS-EOR predictions.

The LSSVM-GWO combination has been used to predict fluid-
flow behavior in WAG process for stratified reservoir models
(Andersen et al., 2022), modeling shale wettability characteristics
for CCS purposes (Zhang et al., 2023), and establishing EOR po-
tential in tight reservoirs (Wang et al., 2023). Likewise, LSSVM-PSO
has been applied to effectively predict CO2 solubility in ionic liquids
(Dashti et al., 2018), the reservoir deliverability of gas from un-
derground natural gas storage facilities (Thanh et al., 2022), and the
properties of CO2 in relation to CCS conditions (Ahmadi et al., 2016).
LSSVM-GWO and LSSVM-PSO are, therefore, both suitable ML
configurations for addressing oil production and CCS-related issues.

The noteworthy aspects of this study are.

� Providing a thorough comparative analysis of standalone and
hybrid ML models, elucidating their respective advantages and
drawbacks in the context of CCS-EOR in unconventional residual
oil zones.

� Applying an innovative feature selection algorithm to identify
and prioritize key features, thereby enhancing the simplicity
and precision of ML configurations.

� Identifying effective ML-optimized combinations that substan-
tially improve CCS-EOR prediction performance.

� Compiling a comprehensive reservoir simulation database
consisting of 32,415 data points to provide statistical confidence
in the trained and tested ML models developed for CCS-EOR
predictions.

� Investigating the hitherto poorly understood aspects of CCS-EOR
applied to unconventional residual oil zones.

� Combining the application of multiple prediction-performance
algorithms to reveal the overfitting tendencies and feature
importance, as well as the prediction accuracy of the customized
ML models.
2. Methodology

The process outlined in Fig. 1 encompasses a hybrid ML
approach for predicting both the mass of CO2 storage and the cu-
mulative oil production in residual unconventional formations. The
primary input variables significantly affecting the uncertainty of
these two target variables are identified through experimental
design and reservoir simulations on the input data. Subsequently,
the input data undergoes a preprocessing phase, which involves
Table 1
Base case input parameters for the reservoir simulation model.

Parameter Base case

Porosity 0.2
Permeability, mD 30
Thickness, ft 100
Depth, ft 4000
BHP, psi 800
Area, ft2 150,000
CO2 injection rate, ft3/day 1,000,454
Sorg 0.15
Sorw 0.25
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normalizing data points within each variable and identifying and
eliminating any outliers or erroneous data. The filtered data is split
into a training group and a testing group. The optimal subset of
features was selected to achieve a high prediction performance
using the non-dominated sorting genetic algorithm (NSGA-II). The
control parameters of the ML algorithms, i.e., multi-layer percep-
tron neural network (MLPNN) and least square support vector
machine (LSSVM), are then fine-tuned. Hybrid ML algorithms
(HML) combine the ML (MLPNN and LSSVM) algorithms with op-
timizers, configuring the integration of those two components to
suit specific problem conditions. The control parameters of the
particle swarm optimization (PSO) and grey wolf optimization
(GWO) algorithms were fine-tuned using a trial-and-error method
with training data to ensure that their configuration was suitable
for the studied dataset.

With optimized parameters in place, the ML and hybrid ML
models enter a training phase where they learn the underlying
patterns and relationships within the training dataset, enabling
them to make predictions on the specified target variables.
Following the training process, these models are deployed to
generate predictions on the target variables using testing datasets.
The performance of each model is rigorously evaluated using
multiple prediction performance criteria, which assess the levels of
relative error and accuracy achieved by the models on both the
training and testing datasets. These evaluation metrics are used to
evaluate the degree of model overfitting during training and pro-
vide insights into the models' generalizability to new, unseen data.
The sequential workflow involves data preprocessing, effective
model training and testing, and comprehensive performance
evaluation to make predictions regarding CO2 storage and cumu-
lative oil production in unconventional formations, while ensuring
the models are robust and capable of generalization.
2.1. Input variables

A dataset consisting of 32,415 simulated samples was generated
using the stochastic Latin hypercube sampling (LHS) technique. LHS
produces quasi-random samples from multi-dimensional distri-
butions of variables, particularly those characterized by substantial
levels of uncertainty. This approach operates efficiently with large
datasets by effectively sampling the full spectrum of variability. It
also generates variable distributions suitable for ML evaluations
(Stein, 1987). LHS selection of input variables and their respective is
guided by sensitivity analysis. The results of previous studies have
provided an understanding of many of the relationships between
CO2-enhanced oil recovery (CO2-EOR) and storage, and these are
taken into account. Sensitivity analysis helps identify which input
variables have the most significant impact on the target variables
and inform the choices made for the LHS technique. By leveraging



Fig. 4. The relative permeability data adopted for the reservoir simulation process.
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the insights from these studies, the input variables are tailored to
capture the key factors influencing CO2-EOR and storage, making
the LHS-generated dataset representative of a wide range of real-
world scenarios (Abbaszadeh and Shariatipour, 2018; Al Eidan
et al., 2015; Gibson-Poole et al., 2006; Lee et al., 2010; Liu and
Zhang, 2011; Van Si and Chon, 2018; Vo Thanh et al., 2019).

The nine input features (Fig. 2) selected for consideration by the
ML models were chosen based on sensitivity analysis and the re-
sults of published studies. These input variables include reservoir
depth, porosity, permeability, reservoir size, thickness, bottom hole
pressure (BHP), as well as the residual oil saturation associatedwith
gas flooding (Sorg) and water flooding (Sorw). This selection en-
sures that the ML models have a comprehensive set of inputs that
capture the complexities and uncertainties of CO2-EOR and storage
systems, thereby enhancing the reliability of their predictions.

2.2. Reservoir simulation case samples

The LHS sampling of the unconventional reservoir simulations
was conducted with the Computer Modeling Group's greenhouse
emissions model (CMG-GEM) reservoir simulator, version 2019
(CMG, 2019). CMG-GEM is a compositional reservoir simulator
specifically designed for unconventional reservoirs. It employs the
equation of state (EOS) and can accommodate three distinct fluid
phases. To facilitate these simulations, a database was created,
which incorporated the sampled values of the input variables and
the computed values of the two target variablesdnamely, the
quantity of CO2 storage and the cumulative oil production vol-
umedfor each simulation run. To be clear, the predicted CO2 stor-
age volume refers to the quantity of CO2 that remains stored within
the reservoir after injection. This distinction is crucial for under-
standing the significance of the model's predictions. The CO2 stor-
age volume indicates the effectiveness of the reservoir in retaining
CO2, which is a critical factor in evaluating the success of subsurface
carbon capture and storage (CCS) reservoirs.

2.3. Base case model description

The initial values of the input variables listed in Table 1 were
employed to create the 3D reservoir simulation model.

Fig. 3 illustrates the synthetic simulation scenario in its base
case, which comprises a total of 12,960 grid cells arranged in a
36 � 36 � 10 grid structure. To provide a logical justification for
these fundamental assumptions, they are based on the petro-
physical parameters acquired from the Goldsmith-Landreth San
Andres Unit (GLSAU) situated in the Permian Basin of Texas, United
States. The choice of these assumptions is motivated by the desire
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to construct a simulation scenario that closely mirrors real-world
conditions and geological characteristics found in the GLSAU. This
alignment with actual geological data and characteristics enhances
the validity and applicability of the findings obtained from this
simulation to practical, real-world contexts. By emulating a specific
geological setting, the simulation results becomemore relevant and
reliable for drawing insights and making decisions in the context of
the GLSAU and similar unconventional reservoirs (Chen and Pawar,
2018). In the simulation model developed, the CO2 injection
method was employed to evaluate both oil production and carbon
storage within the GLSAU reservoir. This approach involves the
injection of CO2 into the subsurface reservoir, which serves two
primary purposes: enhancing oil recovery (EOR) and storing CO2 to
mitigate greenhouse gas emissions.

The choice of relative permeabilities associated with gas and
water saturations has been carefully considered to accurately cap-
ture fluid behavior within unconventional reservoirs (Fig. 4). These
parameters are critical in modeling the movement and distribution
of fluids within the reservoir. The simulation aims to faithfully
represent how fluids behave by relying on credible data sources as
its foundation (Trentham et al., 2015). By using data from trusted
sources, the simulation can provide a more realistic portrayal of
fluid dynamics, ensuring that it closely aligns with actual reservoir
behavior and enhances the quality and applicability of the results
obtained.

The oil phase composition examined in the model is comprised
of ten distinct hydrocarbonmolecular components: C1, C2, C3, C4, C5,
C6, C7eC13, C14eC20, C21eC28, and C29þ (Chen and Pawar, 2018). The
inclusion of these ten hydrocarbon components is sufficient to
accurately represent the composition of hydrocarbons typically
found in reservoirs such as the GLSAU. Each of these components is
characterized by specific mole fractions, which are 0.3577, 0.0584,
0.0597, 0.0536, 0.0358, 0.0116, 0.2282, 0.081, 0.0416, and 0.072447,
respectively (Chen and Pawar, 2019b). These detailed compositions
of the oil phase make it possible to accurately model fluid behavior
and phase equilibrium in the reservoir.

2.4. Data preprocessing

The compiled data from the reservoir simulation is divided into
two categories: the training subset and the testing subset. The
partitioning is done using an appropriate ratio, ensuring a sufficient
amount of data is allocated to each subset. This division allows the
model to learn patterns and relationships from the training data
while providing an independent dataset for evaluating its perfor-
mance. Normalization is then applied to the data within each
category. This procedure standardizes the values of input features,
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ensuring they are on a comparable scale. The process continues
with an initial evaluation of the training subset. This evaluation
aims to identify any outliers present in the dataset. Outliers, which
are data points that significantly deviate from the norm, can have a
detrimental effect on model performance. Therefore, they are
identified and eliminated to prevent their influence on the subse-
quent modeling process. To achieve rapid and precise predictive
models, the most influential input features are selected for ML
modeling.
2.4.1. Data separation and normalization
Proper separation of data into training and testing subsets is a

crucial step in the construction and evaluation of ML models. The
testing set plays a vital role in assessing the model's performance
on data records not involved in model training, and helps to
identify the degree of overfitting associated with the trained
models. Determining the optimal ratio for splitting data between
the training and testing subsets is not a one-size-fits-all approach.
It depends on various factors, including the dataset's size, the
specific problem being addressed, and the analysis objectives.
Therefore, in this research, a sensitivity analysis is conducted to
identify the suitable ratio. Three different separation ratios for
dividing the training/testing (70/30, 80/20, and 90/10) were sys-
tematically evaluated to determine the most effective
configuration.

To ensure an appropriate assignment of ML hyperparameter
values and consider the actual impact of each input feature on the
dependent parameter, it is necessary to normalize the input feature
values before applying machine learning algorithms. In this study,
data normalization is achieved by employing the minimum (Xmin)
and maximum (Xmax) values of each feature, as outlined in Eq. (1),
to obtain the normalized value (Xnorm) for each feature value (X).
Fig. 5. Flowchart for implementation of non-dominated sorting genetic algorithm
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This normalization process transforms each data variable distri-
bution to a range of 0e1.

Xnorm¼ X � Xmin
Xmax � Xmin

(1)

2.4.2. Outlier detection
Data outliers can exist due to various factors such as measure-

ment errors, inherent variability, or rare and noteworthy observa-
tions. Their presence introduces noise into the dataset, which can
distort the model's understanding gained from its learning routine
and result in inadequate curve fitting. Furthermore, outliers can
introduce bias into parameter estimation, compromising the
model's accuracy. They undermine the model's robustness,
impeding its ability to handle variations and diminishing its reli-
ability. Additionally, outliers can hinder the model's ability to
generalize when applied to new, unseen data. By removing outliers,
the model can focus on the majority of the training data that rep-
resents the underlying patterns and relationships, thereby
enhancing its predictive performance. Various techniques can be
employed to detect and eliminate outliers, including statistical
methods, visualization techniques, or domain knowledge-based
approaches. It is important to carefully evaluate and scrutinize
the outliers before removal to ensure their legitimacy and avoid
discarding valuable information.

The detection of outlier data in the training dataset can be
facilitated through the utilization of the Mahalanobis distance
technique. The Mahalanobis distance technique was chosen for this
study because it considers correlations between variables in
multivariate datasets, normalizing the data based on a covariance
matrix. It also effectively identifies outliers across multiple
(NSGA-II) (Seyed Mostapha Kalami Heris, 2024; Anemangely et al., 2017).



Table 2
Advantages and disadvantages of applied ML algorithms.

Algorithm Advantages Disadvantages

MLPNN � Capable of handling multiple input and output variables
(Schmidhuber, 2015)

� Highly flexible and capable of modeling complex non-linear
relationships (Gurney, 2018)

� Good at capturing intricate patterns in data through deep
architectures (Goodfellow et al., 2016)

� Beneficial for tasks where feature extraction is challenging (He
et al., 2016)

� Can approximate any continuous function given sufficient
neurons and data (Schmidhuber, 2015)

� Prone to overfitting, especially with insufficient training data (Bishop and Nasrabadi,
2006)

� Requires large amounts of data for training (Haykin, 1998)
� Requires extensive hyperparameter tuning (e.g., number of layers, neurons per layer,

learning rate) (LeCun et al., 2015)
� Training can be computationally intensive and time-consuming (Hinton and

Salakhutdinov, 2006)
� Sensitive to initial weights and can get stuck in local minima (Suykens and Vandewalle,

1999)

LSSVM � Efficient in terms of training time and computational resources
(Smola and Sch€olkopf, 2004)

� Capable of producing sparse models which are easier to
interpret (Cortes and Vapnik, 1995)

� Provides good generalization performance with less risk of
overfitting (Vapnik, 1995)

� Less sensitive to the curse of dimensionality due to support
vectors (Sch€olkopf and Smola, 2002)

� Requires selection of a suitable kernel function, which can be non-trivial (Anemangely
et al., 2019; Shawe-Taylor and Cristianini, 2004)

� Performance is highly dependent on the choice of kernel and regularization parameters
(Mehrad et al., 2020)
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dimensions, and is computationally efficient for large datasets
(Bishop and Nasrabadi, 2006), making it a practical solution for
outlier detection. ML models are initially configured using all
available input features to forecast CO2 storage and cumulative oil
production. A prediction error (Err) value for each data point is
computed with Eq. (2) comparing the simulated (TPsimulatedi

) and
predicted (TPpredictedi

) values of the target parameters. The Maha-
lanobis distance for each data point is then calculated with Eq. (3),
and a comparison is made with the threshold value established for
the Mahalanobis distance (MD) in accordance with the problem
conditions. If the Mahalanobis distance value for any given data
point surpasses the predetermined threshold, then that data point
is recognized as a potential outlier. Such data points are subse-
quently eliminated from the training dataset unless there is a good
reason to justify their retention.

Erri ¼ TPsimulatedi
� TPpredictedi

(2)

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Erri � ðCovðErrÞÞ�1 � ErriT

q
(3)

The Gaussian process regression (GPR) algorithm is used to
Fig. 6. The hybridization process of combining

303
conduct the outlier detection procedurewith the datasets compiled
based on all the available input features. GPR is configured for the
Mahalanobis distance technique to leverage its ability to model
complex relationships in the data. The Mahalanobis distance is
calculated based on the predictions and covariance relationships
provided by the GPR model. The MATLAB code for the GPR-
Mahalanobis distance technique developed is provided in
Appendix A. GPR requires the selection of an appropriate kernel
function as its key control parameter tuning.
2.4.3. Feature selection
ML input feature selection can be achieved by various methods,

including the application of filters, wrappers, and combinations of
those techniques. Filter methods rely on statistical indices such as
correlation coefficients. Wrapper methods are slower because they
require model evaluations of various feature combinations but tend
to be more rigorous (Osman et al., 2018). Embedded techniques
combine filters with wrapper methods. A hybrid algorithm,
combining MLP with the second version of the non-dominated
sorting genetic algorithm (NSGA-II), was configured in this study
as a wrapper procedure. The NSGA-II functions to minimize the
optimization and predictive algorithms.
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number of selected features based on the root mean square errors
(RMSE) generated.

The NSGA optimization method was introduced by Srinivas and
Deb (1994) to solve multi-objective optimization problems. The key
distinction between NSGA and the genetic algorithm lies in the
selection operator (Subramanian et al., 2009). One of the primary
challenges in solving such problems is the non-sortability of the
feasible solutions set in the multidimensional space. Consequently,
the algorithm relies on the domination concept, where a solution
dominates others when there is no superior option. Additionally, a
solution must clearly dominate other alternatives in at least one
aspect (Coello et al., 2007; Souza et al., 2010; Subramanian et al.,
2009). NSGA employs the fitness sharing method to handle solu-
tions that provide similar performance levels, ensuring proper
distribution and uniformity of solutions in the search space.
Considering the sensitivity of NSGA's performance and quality to
fitness-sharing parameters and other factors, Deb et al. (2002)
introduced the second version of the algorithm, NSGA-II. This
version utilizes crowding distance as an alternative method for
fitness sharing, reducing the complexity of problem-solving (Deb
et al., 2002; Du, 2012; Garrett, 2008; Knowles et al., 2007).
Furthermore, NSGA-II employs a binary and elitism selection
operator, recording and archiving non-dominated solutions from
previous stages, thereby enhancing its performance compared to
older versions (Deb et al., 2000).

Fig. 5 displays an implementation flowchart for NSGA-II. The
algorithm selects some solutions from each generation based on
the binary tournament selection method, comparing two randomly
selected solutions from the population. Lower ranking and longer
crowding distance indicate a better solution. The selected set of
members from each generation undergoes iterative adjustments of
the binary selection operator, participating in crossover and mu-
tation. The resulting new population is again sorted based on
ranking and crowding distance. A new population, equivalent in
size to the previous one, is chosen from the top of the list, and the
remaining members are discarded. This process repeats until the
termination criterion is met. Non-dominated solutions derived
from multi-objective optimization problems are selected from the
Pareto front they establish. Among these solutions, none is inher-
ently preferable, and the optimum decision depends on a problem's
specified priorities.

In this study, each optimized feature selection on the Pareto
front established by NSGA-II is evaluated further by the LSSVM
algorithm configured to predict the target parameter. The resulting
RMSE value of the LSSVM predictions is then processed by the
NSGA-II algorithm as the cost associated with the selection of those
features. To ensure a stable outcome in feature selection, the data
employed for this purpose is partitioned into two randomly
selected subsets, namely training (80% of all data points) and
testing (20% of all data points). The evaluation of the target pre-
dictions by NSGA-II applies weighting coefficients, to yield a
weighted RMSE. That weighting assigns 0.4 of the RMSE for the
training subset predictions and 0.6 of the RMSE for the testing
subset predictions (Eq. (4)). The MATLAB code for the LSSVM-
NSGA-II feature selection technique developed is provided in
Appendix B.

Weighted RMSE¼0:4� RMSEtr þ 0:6� RMSEts (4)
2.5. Machine learning algorithms

Since the MLPNN and LSSVM algorithms used in this section are
well-known and extensively documented, detailed explanations of
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these algorithms are omitted here. Instead, Table 2 presents the
advantages and disadvantages of each algorithm, according to the
cited published sources. Further description of these algorithms is
provided in the supplementary file.

2.6. Hybridizing predictive and optimization algorithms

Achieving a model characterized by high precision and gener-
alizability necessitates adjusting algorithm hyperparameters
(Anemangely et al., 2018, 2019). In this study, the PSO and GWO
metaheuristic algorithms are utilized to optimize weights and
biases in the MLPNN and kernel-function hyperparameters in the
LSSVM. They do so by adjusting decision variable (hyperparameter)
values to minimize the target prediction error values.

In the MLPNN algorithm, determining the number of decision
variables (the sum of weights and biases) necessitates initially
establishing the appropriate network structure, which is performed
via trial-and-error testing of diverse potential network structures.
The determination of the number of decision variables by the
optimization algorithm results in the introduction of optimal values
to MLPNN in each iteration, leading to the creation of the MLPNN
model. Subsequently, the model undergoes evaluation with the
training data. The values of weights and biases are enhanced in
each subsequent iteration of the optimization algorithm based on
the feedback derived from the prediction error values generated in
that iteration. This iterative process continues until the specified
stopping conditions of the optimization algorithm are met, and the
optimal values of weights and biases are then reported. Finally, an
evaluation is conducted by applying the trainedMLPNNmodel with
these hyperparameter values to the testing subset. The entire
process is illustrated as a flowchart in Fig. 6.

The functionality of the LSSVM algorithm is significantly influ-
enced by the type of kernel function employed and the value of its
regularization parameter. The kernel selection process involves a
trial-and-error method. The values of the kernel's hyperparameters
determined by grid search are extracted and treated as one of the
population members in the optimization algorithm. Across multi-
ple iterations, the optimization algorithm refines these hyper-
parameter values, aiming to align the LSSVM algorithm output with
the measured values of the target parameter (Fig. 6).

In determining the optimal structure (MLPNN) and suitable
kernel function (LSSVM), 10-fold cross-validation is utilized to
mitigate the initial randomization of MLPNN and LSSVM hyper-
parameters. In this context, the training data is divided into ten
equal parts, and the MLPNN and LSSVM algorithms are indepen-
dently executed ten times. During each execution, one category
serves as the testing subset, while the remaining nine categories
function as the training subset, ensuring that each data record is
utilized as part of the testing subset at least once. Ultimately, the
mean value derived from these ten executions is regarded as the
expected error for that specific MLPNN structure or the LSSVM
kernel function.

2.7. Evaluation criteria

A wide range of prediction-performance evaluation criteria are
evaluated to assess the performance of models during both the
training and testing phases, aiming to identify the most suitable
model for the task at hand. These evaluation criteria can be cate-
gorized into positive criteria and negative criteria. Positive criteria,
such as the correlation coefficient and determination coefficient,
indicate better model performance when their values are higher.
Conversely, negative criteria, primarily error-based metrics, indi-
cate superior model performance when their values are lower.

One commonly used error measure involves calculating the



Fig. 7. Examining differences in RMSE across LSSVM models created using different ratios for the division of training and testing data in the prediction of CO2 storage (a) and
cumulative oil production (b).

Fig. 8. Analyzing the disparities in RMSE values generated by models using various kernel functions of the GPR algorithm for the modeling of both CO2 storage (a) and cumulative
oil production (b).
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difference between simulated values and predicted values of the
target parameter, CO2 storage and cumulative oil production, using
Eq. (2). This serves as the basis for determining the relative error
(RE, Eq. (5)) and the average relative error (ARE, Eq. (6)). Addi-
tionally, the root mean squared error (RMSE, Eq. (7)) is a widely
accepted error measure that provides a comprehensive under-
standing of model performance due to its unit consistency.
(Gandomi et al., 2011) introduced a performance index (PI, Eq. (8))
for model evaluation, which combines the correlation coefficient
(R) and the relative root mean square error (RRMSE). A lower PI
value indicates superior model performance. The RRMSE in the PI is
calculated using Eq. (9) based on RMSE and the average of the
simulated values of the target parameter (TPsimulatedi

).
One widely used positive metric is the coefficient of determi-

nation (R2), which is calculated using Eq. (10). Another positive
measure is the a20-index, which provides insights into the con-
centration of data points around the Y(predicted) ¼ X(measured)
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line. This metric involves counting data points (m20) with a
measured-to-predicted value ratio between 0.8 and 1.2. This count
is then divided by the total number of data points (Z) used in both
the training and testing stages, as described in Eq. (11).

RE¼ Erri
TPsimulatedi

� 100 (5)

ARE¼

PZ
i¼1

RE

Z
(6)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z

XZ
i¼1

Err2i

vuut (7)



Fig. 9. Visualization of identified outliers within the training subset for CO2 mass storage: (a) Frequency distribution; (b) Error residuals.

Fig. 10. Visualization of identified outliers within the training data set for cumulative oil production volume: (a) Frequency distribution; (b) Error residuals.

Fig. 11. Variations in RMSE and R2 are used to select the optimal input feature combinations for modeling: (a) CO2 storage mass; (b) Cumulative oil production.
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Table 3
Optimal feature sets are determined based on various feature combinations used for CO2 storage modeling, showing prediction performance in terms of RMSE and R2 values.

Number of inputs Selected feature(s) RMSE R2

1 Area 3.6495 0.8423
2 Area, Por 2.5819 0.8991
3 Area, Por, Perm 2.0773 0.9342
4 Area, Por, Perm, BHP 1.7221 0.9516
5 Area, Por, Perm, BHP, InjRate 1.5043 0.9632
6 Area, Por, Perm, BHP, InjRate, Thickness 1.3285 0.9708
7 Area, Por, Perm, BHP, InjRate, Thickness, Sorg 1.2186 0.9786
8 Area, Por, Perm, BHP, InjRate, Thickness, Sorg, Depth 1.2181 0.9796
9 Area, Por, Perm, BHP, InjRate, Thickness, Sorg, Depth, Sorw 1.2179 0.9811

Table 4
The optimal feature sets are determined based on various feature combinations used for cumulative oil production modeling, showing prediction performance in terms of
RMSE and R2 values.

Number of inputs Selected feature(s) RMSE R2

1 Por 44.1696 0.3254
2 Por, Perm 35.0749 0.6179
3 Por, Perm, Area 27.4408 0.7203
4 Por, Perm, Area, InjRate 20.9376 0.8022
5 Por, Perm, Area, InjRate, BHP 18.0583 0.8698
6 Por, Perm, Area, InjRate, BHP, Thickness 17.1967 0.9005
7 Por, Perm, Area, InjRate, BHP, Thickness, Sorg 16.5843 0.9213
8 Por, Perm, Area, InjRate, BHP, Thickness, Sorg, Sorw 16.5741 0.9305
9 Por, Perm, Area, InjRate, BHP, Thickness, Sorg, Sorw, Depth 16.5686 0.9332
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PI¼RRMSE
1þ R

(8)

RRMSE¼ RMSE
jTPsimulatedj

(9)

R2 ¼1�

PZ
i¼1

Err2i

PZ
i¼1

0
BBB@TPpredictedi

�
PZ
i¼1

TPsimulatedi

Z

1
CCCA

2 (10)
Fig. 12. Comparisons of RMSE values among various training algorithms implemented wi
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a20 - index ¼ m20
Z

(11)

3. Results

3.1. Preprocessing of data

Considering the primary objective of achieving optimal accuracy
in predicting the target parameter within unseen data through the
development of predictive models, it becomes imperative to assess
the performance of these models on data not utilized during the
training phase. To facilitate this evaluation, it is common practice to
reserve a portion of the collected data for testing, as not all data is
employed in model training. Consequently, following model
development, performance evaluation is conducted using this
reserved test data. In this study, data separation into training and
th MLPNN models for CO2 storage (a) and cumulative oil production (b) predictions.



Fig. 13. Comparison of RMSE values for LSSVM models generated with various kernel functions in predicting CO2 storage (a) and cumulative oil production (b).

Table 5
Controllable parameter values in optimization algorithms hybridized with predictor
algorithms.

Parameter MLPNN LSSVM

PSO GWO PSO GWO

Maximum iteration 200 200 200 200
Population size 60 50 50 40
w (inertia weight) 0.97 e 0.98 e

c1 2.05 e 2.05 e

c2 2.05 e 2.05 e

Table 6
The optimum values of hyperparameters for simple and hybrid LSSVM models for
the prediction of CO2 storage mass and cumulative oil production.

Target parameter Optimization algorithm s C

CO2 storage Grid search 101.5119 724216.0455
PSO 156.8406 715295.4188
GWO 161.5274 720518.6049

Cumulative oil production Grid search 31.4095 175.7268
PSO 48.0749 163.8495
GWO 41.2685 169.8374
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testing subsets precedes the modeling process. A critical consid-
eration in this procedure is determining the appropriate ratio for
data division into training and testing sets, as it significantly im-
pacts the accuracy and generalizability of the models. Fundamen-
tally, the training data category should encompass sufficient
qualitative and quantitative diversity, enabling the model to
generalize effectively when applied to unseen data. To achieve an
optimal data separation, three scenarios employed in previous
studies, specifically 70/30, 80/20, and 90/10, were taken into ac-
count for this study's data division. Following data separation,
LSSVM models were developed using the training subset and
subsequently evaluated on the testing subset.

Fig. 7 illustrates the comparison of RMSE values among the
developed LSSVM models at different separation ratios. The figure
indicates that as the volume of training data increases, the error
during the training phase also rises, while the error during the
testing phase exhibits minimal variation. This observation could be
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attributed to the limited divergence in data values with the
expansion of the learning dataset, resulting in similar error values
on the testing data. Based on this outcome, a data separation ratio
of 70% (22,690 data points) for training and 30% (9725 data points)
for testing is employed.

The training subset is evaluated to identify and potentially
remove outlying data records. Since, in practical scenarios, test data
is supplied post-model development, the analysis of outliers is
exclusively performed on the training data to yield results consis-
tent with actual outcomes. The Mahalanobis method is applied to
each of the compiled simulation datasets: one with CO2 mass
storage as the target, the other with cumulative oil production as
the target. Recognizing that the outcome of this assessment hinges
significantly on the kernel function employed in the GPR algorithm,
diverse models of this algorithm featuring distinct kernel functions
were generated, and their RMSE values were assessed. Fig. 8 dis-
plays the GPR model results identifying the ARDExp (ARD expo-
nential) kernel function as the kernel that yields the minimum
error for both CO2 storage and cumulative oil production prediction
models. The ARDExp kernel outperforms the exponential (Exp),
squared exponential (SE), rational quadratic (RQ), and ARD rational
quadratic (ARDRQ)) kernels.

In Figs. 9 and 10, the outliers identified are depicted according to
the outcomes of the GPR model developed with the selected kernel
function applying the Mahalanobis method to the training data.
The identified outliers are distinguished by their higher residual
error values. Consequently, a total of 1613 (~7.1% of the training
subset) and 1219 (~5.4% of the training subset) data points recog-
nized as outliers were excluded from the training data for the CO2
dataset and cumulative oil production, respectively. The determi-
nation of the number of outliers is based on adopting a threshold
set at three times the average Mahalanobis distance across all data
points. In this analysis, it is important to highlight the utilization of
the 10-fold cross-validation method, a measure implemented to
mitigate the impact of random data selection for training and
testing on outlier detection outcomes. The consistent results across
the ten modeling iterations demonstrate the stability of the outlier
detection process. This uniformity can be attributed to the sub-
stantial number of data records involved in the training steps.

Following the removal of outliers, the NSGA-II algorithm was



Fig. 14. Cross plots illustrating the comparison between simulated and predicted CO2 storage mass values utilizing MLPNN (a), LSSVM (b), MLP-PSO (c), MLP-GWO (d), LSSVM-PSO
(e), and LSSVM-GWO (f) models on the training subset.

S. Davoodi, H.V. Thanh, D.A. Wood et al. Petroleum Science 22 (2025) 296e323

309



Fig. 15. Variations in RMSE across successive iterations of hybrid model optimizers in
the prediction of CO2 storage mass for the training subset.
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applied to select features with a more pronounced impact on the
target parameters. For this purpose, an LSSVM model with an RBF
kernel was used to evaluate the selected features combined with
the NSGA-II algorithm. Fig. 11 displays the variations in RMSE and
R2 values generated by different feature combinations with the
LSSVM-NSGA-II predictive models for CO2 storage and cumulative
oil production. Up to combinations involving seven features, an
increase in the number of features corresponds to an improvement
in prediction performance. However, prediction performance im-
provements are minimal for combinations involving more than
seven features. Hence, datasets involving just seven input features
(excluding features “depth” and “Sorw”) were used for detailed ML
modeling.

Tables 3 and 4 summarize the prediction performance of
different feature combinations applied to the two datasets. Irre-
spective of the prediction target, the prediction performance ach-
ieved by the seven-feature combination (injection rate (InjRate),
permeability (Perm), Thickness, porosity (Por), BHP, Area, and Sorg)
is only marginally improved by adding features depth and Sorw for
CO2 storage mass and cumulative oil production (see Table 4).

3.2. Tuning the controllable parameters of ML algorithms

Diverse MLPNN models (for both CO2 storage mass and cumu-
lative oil production) were initially generated, varying in the
number of hidden layers between 1 and 3, and varying the number
of neurons in each MLPNN layer from 2 to 9 in each hidden layer.
Table 7
Comparison of prediction performance for ML and hybrid ML models applied to the CO2

Type Model ARE RMSE, MMT

Simple MLP 0.6973 1.2133
LSSVM 0.5922 0.9218

Hybrid MLP-PSO 0.4180 0.5954
MLP-GWO 0.3662 0.5282
LSSVM-PSO 0.2461 0.5575
LSSVM-GWO 0.1365 0.4052
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The analysis identified the optimum MLPNN structure for the
studied dataset. It consists of three hidden layers with 7, 5, and 5
neurons in the first, second, and third layers, respectively. This
MLPNN structure yielded the lowest RMSE values for both training
and testing subsets. Hence, this specific structure was selected for
detailed analysis.

The assessment of various MLPNN training algorithms revealed
that the Levenberg-Marquardt (trainlm) algorithm generated the
least errors (Fig. 12).

With respect to MLPNN layer activation functions, three options
(hyperbolic tangent, linear, and logistic sigmoid) were evaluated for
each hidden layer. The results identified that the best prediction
performance was achieved by applying the sigmoid activation
function to the first and second hidden layers, and the linear acti-
vation function to the last hidden layer.

Four LSSVM kernel-function options were evaluated (radial
basis function (RBF), linear (Lin), polynomial (Poly), andmulti-layer
perceptron (MLP)) for both CO2 storage mass and cumulative oil
production datasets. Fig. 13 reveals that the LSSVMmodels with the
RBF kernel generate the lowest RMSE values for both datasets, so
that kernel was selected for both models.

A grid-search algorithm was used to determine the optimal
values of LSSVM hyperparameters: (1) RBFwidth (s), which con-
trols the influence of each support vector on the decision boundary;
and, (2) the regularization parameter (C), which controls the trade-
off between achieving a small training error and having a simpler
model.

The efficacy of hybrid algorithms, alongside predictive algo-
rithms, is contingent upon the performance of the GWO and PSO
optimization algorithms. Therefore, the configuration of control
parameters in optimization algorithms needs to be established in
accordance with the problem conditions. To achieve this, a trial-
and-error method was employed, resulting in the determination
of suitable values for the control parameters in the PSO and GWO
algorithms, as outlined in Table 5.

In the analyses performed for simple and hybrid LSSVM, the best
hyperparameter values obtained for the kernel functions are pre-
sented in Table 6 for the models that predict CO2 storage mass and
cumulative oil production.

The development of detailed predictive models for CO2 storage
mass and cumulative oil production involved the application of
both simple and hybrid ML algorithms, configured with optimized
hyperparameters, to the selected features of the pre-processed
datasets.

3.3. Developing predictive models for CO2 storage mass

Fig. 14 displays cross plots of simulated and predicted CO2
storage mass values for each developed model. The best-fit line
through the data points of the simple ML models deviates slightly
storage mass training subset.

RRMSE R2 PI a20-index

0.0618 0.9987 0.0309 0.8667
0.0470 0.9999 0.0235 0.8914

0.0303 0.9974 0.0152 0.9382
0.0269 0.9978 0.0134 0.9458
0.0284 0.9976 0.0142 0.9528
0.0206 0.9987 0.0103 0.9657



Fig. 16. Cross plots illustrating the comparison between simulated and predicted CO2 storage mass values utilizing MLPNN (a), LSSVM (b), MLP-PSO (c), MLP-GWO (d), LSSVM-PSO
(e), and LSSVM-GWO (f) models on testing data.
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Table 8
Comparison of prediction performance for ML and hybrid ML models applied to the CO2 storage mass testing subset.

Type Model ARE RMSE, MMT RRMSE R2 PI a20-index

Simple MLP 1.9875 2.1402 0.1087 0.9952 0.0544 0.7982
LSSVM 1.5273 1.6245 0.0825 0.9998 0.0412 0.8268

Hybrid MLP-PSO 1.4344 0.9927 0.0504 0.9924 0.0252 0.9023
MLP-GWO 1.2797 0.9408 0.0478 0.9931 0.0239 0.9050
LSSVM-PSO 0.4950 0.8368 0.0425 0.9946 0.0213 0.9239
LSSVM-GWO 0.5333 0.6224 0.0316 0.9970 0.0158 0.9420
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from the Y(predicted) ¼ X(simulated) line, both at high and low
values of CO2 storage mass. This indicates that, in low values of CO2
storage mass, these models tend to overestimate values, while for
high CO2 storage mass cases, they tend to underestimate values. In
contrast, the best-fit lines for the hybrid models coincide precisely
with the Y ¼ X line.

Fig. 15 displays the trend of RMSE reduction per optimizer
iteration for the CO2 storage mass prediction for the hybrid models
applied to the training subset. The GWO algorithm converges to
lower RMSE values than the PSO, as recorded in Fig. 15.

Table 7 displays the prediction performance metrics for simple
and hybridMLmodels applied to the training subset for CO2 storage
mass. The hybrid models generate better prediction performance
than the simple ML models, with the LSSVM-GWO generating the
lowest prediction errors.

Fig. 16 displays cross plots of simulated versus predicted values
of CO2 storage mass using both simple and hybrid models for the
testing subset. The best-fit line for the simple ML models deviates
from the Y ¼ X line, indicating an overestimation at low values of
CO2 storage mass and an underestimation at high values of CO2
storage mass. Given the occurrence of this phenomenon during the
training phase, its manifestation in unseen data is expected. Hence,
caution is advised when employing simple models on unseen data.
In contrast, the best-fit line in the hybrid models consistently aligns
with the Y ¼ X line, signifying the reliable overall performance of
the trained models applied to unseen data.

Table 8 displays the prediction performance metrics for simple
and hybrid ML models applied to the testing subset for CO2 storage
mass. The hybrid models generate better prediction performance
than the simple ML models, with the LSSVM-GWO generating the
lowest prediction errors.
3.4. Developing the predictive models for cumulative oil production

Fig. 17 displays cross plots of simulated versus predicted values
for cumulative oil production values for each developed model. The
best-fit line through the data points of the simple ML models de-
viates slightly from the Y(predicted) ¼ X(simulated) line, both at
high and low values of cumulative oil production. This indicates
that the cumulative oil production is underestimated at high values
and overestimated at low values. In contrast, the best-fit lines for
the hybrid models plot more closely to the Y ¼ X line, especially for
the LSSVM-GWO model.

Fig. 18 displays the trend of RMSE reduction per optimizer
iteration for the cumulative oil production prediction for the hybrid
models applied to the training subset. The GWO algorithm con-
verges to lower RMSE values than the PSO, as recorded in Fig. 18.

Table 9 displays the prediction performance metrics for simple
and hybrid MLmodels applied to the training subset for cumulative
oil production. The hybrid models generate better prediction per-
formance than the simple ML models, with the LSSVM-GWO
generating the lowest prediction errors.

Fig. 19 displays cross-plots of simulated versus predicted
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cumulative oil production values using both simple and hybrid
models for the testing subset. In this visual representation, the
best-fit line diverges from the Y ¼ X line, indicating that the
developed models tend to overestimate cumulative oil production
at lower values and underestimate it at higher values. The occur-
rence of this phenomenon in the testing stage aligns with similar
outcomes with the training subset. The degree of deviation is less
pronounced for the hybridmodels than the simpleMLmodels, with
the LSSVM-GWO model generating the least deviation.

Table 10 displays the prediction performance metrics for simple
and hybrid ML models applied to the testing subset for cumulative
oil production. The hybrid models generate better prediction per-
formance than the simple ML models, with the LSSVM-GWO
generating the lowest prediction errors. This observation suggests
that the trained LSSVM-GWO model possesses a higher general-
ization ability compared to the other developed models, high-
lighting its effectiveness in making accurate predictions beyond the
training subset.

4. Discussion

Further insight into the prediction performance of the devel-
opedmodels with the two datasets can be gained by considering an
over-fitting index, integrated performance scoring, and partial
dependence analyses of the input features.

4.1. Over-fitting analysis of developed models

An over-fitting index (OFI) (Gandomi and Roke, 2015) is applied,
as defined in Eq. (12), that relies on the PI criterion during both the
training (PItr) and testing (PIts) stages, adjusted for the relative
quantity of data records in the training (Ztr), testing (Zts), and
overall (Z) sets. Given that a lower PI value signifies a model with
superior prediction performance, the OFI relationship presented
serves to standardize the PI value for themodel across both training
and testing phases. Therefore, a low OFI value indicates that a
prediction model exhibits reduced overfitting.

OFI ¼
�
Ztr � Zts

Z

�
PItr þ 2

�
Zts
Z

�
PIts (12)

Table 11 displays OFI values corresponding to the performance
of the developed models for predicting CO2 storage and cumulative
oil production. The simple models exhibit higher OFI values
compared to hybrid models. Specifically, the MLPNN model gen-
erates the highest OFI value, signifying a notable level of overfitting,
while the LSSVM-GWO hybrid model generates the lowest OFI
value, suggesting a reduced tendency for overfitting. Based on the
outcomes of this analysis, the models can be ranked in terms of
overfitting severity as follows: MLPNN (highest) > LSSVM > MLP-
PSO > MLP-GWO > LSSVM-PSO > LSSVM-GWO (lowest). This im-
plies that LSSVM models are likely to provide more resilient pre-
diction performance across various datasets or scenarios, making
them more generalizable than the MLPNN models.



Fig. 17. Cross plots illustrating the comparison between simulated and predicted cumulative oil production values utilizing MLPNN (a), LSSVM (b), MLP-PSO (c), MLP-GWO (d),
LSSVM-PSO (e), and LSSVM-GWO (f) models on training subset.
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Fig. 18. Variations in RMSE across successive iterations of hybrid model optimizers in
the prediction of cumulative oil production for the training subset.
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4.2. Prediction “score” analysis for the developed models

ML prediction models sometimes exhibit strong prediction
performance according to one criterion while demonstrating a
poorer performance according to another, potentially causing
confusion. To alleviate this issue, a scoring method combining the
results of several performance metrics is applied. For a particular
performance metric, the model achieving the most favorable per-
formance relative to other models in that particular criterion is
awarded the highest score. Conversely, the model with the poorest
performance is assigned the lowest score. The value of the highest
score is determined by the total number of models developed,
resulting in scores ranging from 1 to 6 in this study. Such “scores”
are separately aggregated for the training and testing stages for
each performance metric. Additionally, an overall score, which is
the sum of the training and testing scores, is also presented.

Table 12 displays the scores assigned to each of the developed
models for predicting CO2 storage mass. The models can be ranked
in terms of prediction performance as: LSSVM-GWO (best
performance) > LSSVM-PSO > MLP-GWO > MLP-
PSO > LSSVM > MLPNN (worst performance). That ranking is
clearly visualized in a radar diagram (Fig. 20).

Table 13 displays the scores assigned to each of the developed
models for predicting cumulative oil production. Themodels can be
ranked in terms of prediction performance as follows: LSSVM-GWO
(best performance) > LSSVM-PSO > MLP-GWO > MLP-
PSO > LSSVM >MLPNN (worst performance). That ranking is easily
visualized in a radar diagram (Fig. 21).
Table 9
Comparison of prediction performance for ML and hybrid ML models applied to the cum

Type Model ARE RMSE, MMbbl

Simple MLP 1.0143 16.5202
LSSVM 0.8568 15.0232

Hybrid MLP-PSO 0.7835 13.9483
MLP-GWO 0.7040 10.6293
LSSVM-PSO 0.6010 11.6009
LSSVM-GWO 0.5252 9.73920
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4.3. Feature impact analysis for the LSSVM-GWO model

Analyzing the impact of each input feature on the outcome of
the model generating the highest prediction performance (LSSVM-
GWO) can reveal which parameters exert stronger and weaker in-
fluences on the model's solution. The Shapley additive explanation
(SHAP) method was employed to ascertain the significance of each
input feature on the LSSVM-GWO predictive model's outputs. SHAP
values are assigned based on the impact of each data record of each
input feature on a model's overall prediction performance. SHAP
values are presented in terms of the positive and negative aspects
of a feature on the predictions derived from partial-dependence
plots. The individual SHAP values (shown by the color scale: red
high SAP value, blue low SHAP value) for each data record provide
detailed insight into how a feature influences the model's predic-
tion output (horizontal scale; negative numbers mean a negative
impact on the model output; positive numbers mean a positive
impact on model output). The SHAP summary plot displays mean
absolute SHAP values and indicates the overall relative importance
of each input feature.

Fig. 22 displays the SHAP data-record detail and summary plots
for the LSSVM-GWOmodel applied to predict the CO2 storage mass
dataset. The “Area” input feature is revealed as the most influential;
higher “Area” SHAP values (red in Fig. 22(a)) positively contribute
to CO2 storage mass prediction, whereas lower “Area” values (blue
in Fig. 22(a)) have a negative impact. The second-most influential
feature is porosity (“Por”); Lower Por values (blue in Fig. 22(a);
displaying an elongated tail) negatively influence predictions,
whereas higher Por SHAP values (red in Fig. 22(a)) exhibit a positive
influence. The permeability feature (“Perm”) shows a similar shape
to Por in its SHAP individual distribution but with less extreme
values. On the other hand, the CO2 injection rate (“InjRate”) shows a
more symmetrical distribution of SHAP values, which are more
evenly spaced on either side of the zero-model influence point;
higher InjRate values contribute more positively to model pre-
dictions. For BHP and Sorg, high SHAP values contribute negatively
to predictions, whereas the thickness parameter has minimal in-
fluence on predictions. The summary SHAP diagram (absolute
mean values; Fig. 22(b)) ranks the features as Area (most
influential) > Por > BHP > Perm > Sorg > InjRate > Thickness (least
influential).

Fig. 23 shows the detailed feature-influence plot and the sum-
mary plot for partial dependency SHAP analysis of the LSSVM-GWO
model applied to the cumulative oil production dataset. The SHAP
observations from the SHAP detailed feature-influence plot
(Fig. 23(a)) reveal distinctive patterns for each feature. The Por and
Prem features exhibit a consistent trend, with low values contrib-
uting negatively and high values positively to predictions. The Area
predictor shows a linear relationship, where higher values posi-
tively impact predictions, and lower values have a negative effect
on the prediction model's output. The BHP feature displays a strong
ulative oil production training subset.

RRMSE R2 PI a20-index

0.0985 0.9996 0.0493 0.7808
0.0896 0.9998 0.0448 0.8042

0.0832 0.9902 0.0417 0.8261
0.0634 0.9940 0.0318 0.8492
0.0692 0.9926 0.0347 0.8625
0.0559 0.9952 0.0280 0.8710



Fig. 19. Cross plots illustrating the comparison between simulated and predicted cumulative oil production values utilizing MLPNN (a), LSSVM (b), MLP-PSO (c), MLP-GWO (d),
LSSVM-PSO (e), and LSSVM-GWO (f) models on testing data.
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Table 10
Comparison of prediction performance for ML and hybrid ML models applied to the cumulative oil production testing subset.

Type Model ARE RMSE, MMbbl RRMSE R2 PI a20-index

Simple MLP 14.7337 21.7750 0.1258 0.9993 0.0629 0.7482
LSSVM 11.6632 19.9736 0.1154 0.9996 0.0577 0.7758

Hybrid MLP-PSO 11.2356 15.0152 0.0867 0.9895 0.0435 0.8333
MLP-GWO 4.9752 13.8801 0.0802 0.9907 0.0402 0.8349
LSSVM-PSO 6.1576 13.3302 0.0770 0.9911 0.0386 0.8697
LSSVM-GWO 5.4651 12.5143 0.0723 0.9920 0.0362 0.8640

Table 11
Calculated OFI values for developed predictive models applied to the CO2 storage mass and cumulative oil production datasets.

Target parameter MLP LSSVM MLP-PSO MLP-GWO LSSVM-PSO LSSVM-GWO

CO2 storage 0.0457 0.0347 0.0215 0.0201 0.0187 0.0138
Cumulative oil production 0.0578 0.0528 0.0428 0.0370 0.0371 0.0331

Table 12
Model scores of developed models for individual criteria and cumulative scores in training, testing, and overall phases for CO2 storage mass prediction.

Model Subset ARE RMSE RRMSE R2 PI a20-index Score Total score

MLPNN Train 1 1 1 5 1 1 10 19
Test 1 1 1 4 1 1 9

LSSVM Train 2 2 2 6 2 2 16 32
Test 2 2 2 6 2 2 16

MLP-PSO Train 3 3 3 2 3 3 17 33
Test 3 3 3 1 3 3 16

MLP-GWO Train 4 5 5 4 5 4 27 49
Test 4 4 4 2 4 4 22

LSSVM-PSO Train 5 4 4 3 4 5 25 54
Test 6 5 5 3 5 5 29

LSSVM-GWO* Train 6 6 6 5 6 6 35 69
Test 5 6 6 5 6 6 34

Note: * Represents the best-performing model.

Fig. 20. Radar chart contrasting prediction performance scores for CO2 storage mass
prediction between training and testing subsets and the overall score achieved by ML
and hybrid models.
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positive correlation between higher values and favorable pre-
dictions. Most high SHAP values for the InjRate feature contribute
positively to the predictions generated by the models, but some
high values have negative impacts on model performance. The
Thickness feature values also result in mixed impact, with some
low and high values influencing predictions positively, and others
negatively. The Sorg feature has impacts on model output close to
zero, indicating a limited impact on cumulative oil production
predictions. These findings provide nuanced insights into the
complex relationships between each input feature and model
predictions, contributing to a more comprehensive understanding
of the model's behavior. According to the SHAP summary plot
(Fig. 23(b)) analysis for the best cumulative oil production predic-
tive model, it is established that the Por feature exerts the most
significant influence on the model output, while the Sorg feature
has the least impact on the model's predictions. The SHAP model
ranks the features as Por (most influential) > Area > Perm
> BHP > Thickness > InjRate > Sorg (least influential). Note that the
ranking order of input variables is quite different from that asso-
ciated with the CO2 storage mass model (Fig. 23).



Table 13
Model scores of developed models for individual criteria and cumulative scores in training, testing, and overall phases for cumulative oil production prediction.

Model Subset ARE RMSE RRMSE R2 PI a20-index Score Total score

MLPNN Train 1 1 1 5 1 1 10 20
Test 1 1 1 5 1 1 10

LSSVM Train 2 2 2 6 2 2 16 32
Test 2 2 2 6 2 2 16

MLP-PSO Train 3 3 3 1 3 3 16 32
Test 3 3 3 1 3 3 16

MLP-GWO Train 4 5 5 3 5 4 26 50
Test 6 4 4 2 4 4 24

LSSVM-PSO Train 5 4 4 2 4 5 24 52
Test 4 5 5 3 5 6 28

LSSVM-GWO* Train 6 6 6 4 6 6 34 66
Test 5 6 6 4 6 5 32

Note: * Represents the best-performing model.

Fig. 21. Radar chart contrasting prediction performance scores for CO2 storage pre-
diction between training and testing subsets and the overall score achieved by ML and
hybrid models.

Fig. 22. Visualizing the influence of each input feature on CO2 storage mass predictions wi
SHAP summary plot (b) of feature importance.
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5. Conclusions

The prediction of CO₂ storage mass and cumulative oil produc-
tion for CCS-EOR simulations in unconventional reservoirs was
performed using two machine learning algorithms (MLPNN and
LSSVM) and four hybrid ML models (MLP-PSO, MLP-GWO, LSSVM-
PSO, and LSSVM-GWO). A large dataset (>32,000 records) was split
into training (~70%) and testing (~30%) groups, with normalization
applied to both based on the training data. Outliers were removed
using Mahalanobis distance applied to the training set. NSGA-II-
LSSVM was used to select the most influential features from nine
input parameters: depth, porosity (Por), permeability (Perm),
thickness, bottom-hole pressure (BHP), area, CO2 injection rate
(InjRate), residual oil saturation to gas flooding (Sorg), and residual
oil saturation to water flooding (Sorw). Predictive models were
developed and tested, and performance was evaluated using sta-
tistical metrics, together with an overfitting index, scoring, partial
dependence, and SHAP analysis. The study's results led to the
following conclusions.
th SHAP values in the LSSVM-GWO model: SHAP detailed feature impact plot (a) and



Fig. 23. Visualizing the influence of each feature on cumulative oil production predictions with SHAP values in the LSSVM-GWO model: SHAP detailed feature impact plot (a) and
SHAP summary plot (b) of feature importance.
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� Assessments with various training-to-testing data ratios (70:30,
80:20, and 90:10) showed that the 70:30 ratio yielded the most
generalizable outcomes.

� Outlier identification revealed mean outlier counts of 1613 for
the CO2 storagemass and 1219 for the cumulative oil production
datasets.

� Integrating NSGA-II with LSSVM for feature selection demon-
strated that using seven features (BHP, Thickness, Perm, Por,
Sorg, InjRate, and Area) was sufficient to generate low predic-
tion errors, leading to the omission of depth and Sorw from the
models.

� Trial-and-error selection of the suitable kernel function for
LSSVM revealed that the RBF kernel function achieved the
lowest prediction errors for CO2 storagemass and cumulative oil
production.

� Sensitivity analysis of the MLPNN architecture, training algo-
rithm, and activation functions revealed that using three hidden
layers with 7, 5, and 5 neurons, the Levenberg-Marquardt
training algorithm and Gaussian activation function yielded
the best prediction performance.

� LSSVM-GWO achieved the lowest RMSE (0.4052 MMT for CO₂
storage, 9.7392 MMbbl for oil production) and highest R2

(0.9987 for CO₂ storage, 0.9952 for oil production) among all
models in the training phase.

� LSSVM-GWO also demonstrated low RMSE with the testing data
(0.6224MMT for CO₂ storage,12.5143MMbbl for oil production),
indicating high generalizability.

� Metaheuristic optimization algorithms outperform
LevenbergeMarquardt and grid search in achieving global
optimality for the MLPNN and LSSVM models. The grey wolf
optimization (GWO) algorithm performs better than the particle
swarm optimization (PSO) algorithm.

� A unified scoring method ranked the models for CO2 storage
mass and cumulative oil production as follows: LSSVM-GWO
(best) > LSSVM-PSO > MLP-GWO > MLP-
PSO > LSSVM > MLPNN (worst).

� Over-fitting index (OFI) analysis ranked the models by over-
fitting as follows: LSSVM-GWO (minimal overfitting) < LSSVM-
PSO < MLP-GWO < MLP-PSO < LSSVM < MLPNN (maximal
overfitting). This confirms that LSSVM-GWO is the most gener-
alizable model.
318
� SHAP analysis revealed the “Area” and “Por” input features as
most influential for CO₂ storage mass and oil production pre-
dictions, respectively. On the other hand the “Thickness” and
“Sorg” were identified as the least impactful for those two
models, respectively.
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Appendix A. Code for calculating the Mahalanobis distance
using the GPR model.
MATLAB code of the outlier detection technique applied

Mahalanobis distance outlier detection developed MATLAB code.
% Load data file
FullFileName ¼ fullfile(FilePath, FileName)
[Data, Label, ~] ¼ xlsread(FullFileName)
X ¼ Data(:,1:end-1)
Y ¼ Data(:,end)
% Train Data
nFeature ¼ size(X,2)
nSample ¼ numel(Y)
IDXsh ¼ randperm(nSample)
trRatio ¼ 0.7;
NotrSample ¼ round(trRatio � nSample);
trIDX ¼ IDXsh(1:NotrSample);
tsIDX ¼ IDXsh(NotrSampleþ1:end);
Xtr ¼ X(trIDX,);
Ytr ¼ Y(trIDX,);
Xts ¼ X(tsIDX,);
Yts ¼ Y(tsIDX,);
% Train GPR model (model ¼ rpg)
Mdl ¼ fitrgp(Xtr, Ytr,"FitMethod","exact","Standardize",true,"KernelFunction","ardexponential");
% Predict response using GPR model
y_pred ¼ predict(Mdl, Xtr);
% Calculate residuals
residuals ¼ Ytr - y_pred;
% Calculate Mahalanobis distance
M ¼ cov(residuals);
invM ¼ inv(M);
D ¼ zeros(size(residuals, 1), 1);
for i ¼ 1:size(residuals, 1)
D(i) ¼ sqrt(residuals(i,) * invM � residuals(i,)');

end
% Set threshold for outlier detection
threshold ¼ 3 � std(D)
% Identify outliers
outliers ¼ find(D > threshold);
Appendix B. Code for feature selection using LSSVM-NSGA-II
MATLAB code of the feature selection technique applied

LSSVM-NSGA-II feature selection technique developed MATLAB code.
clc;
clear;
close all;
%% Problem Definition
data ¼ LoadData;
CostFunction ¼ @(s) FeatureSelectionCost(s,data); % Cost Function
nVar ¼ data.nx; % Number of Decision Variables
VarSize ¼ [1 nVar]; % Size of Decision Variables Matrix
% Number of Objective Functions
nObj ¼ numel(CostFunction(randi([0 1],VarSize)));
% The two goals for this study are: decreasing the number of features for the prediction and minimizing the error of prediction for that number of selected features in the

first goal.
%% NSGA-II Parameters
MaxIt ¼ 30; % Maximum Number of Iterations
nPop ¼ 50; % Population Size
pCrossover ¼ 0.7; % Crossover Percentage
nCrossover ¼ 2 � round(pCrossover � nPop/2); % Number of Parnets (Offsprings)
pMutation ¼ 0.2; % Mutation Percentage

(continued on next page)
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(continued )

MATLAB code of the feature selection technique applied

nMutation ¼ round(pMutation � nPop); % Number of Mutants
mu ¼ 0.1; % Mutation Rate
%% Initialization
empty_individual.Position ¼ [];
empty_individual.Cost ¼ [];
empty_individual.Out ¼ [];
empty_individual.Rank ¼ [];
empty_individual.DominationSet ¼ [];
empty_individual.DominatedCount ¼ [];
empty_individual.CrowdingDistance ¼ [];
pop ¼ repmat(empty_individual, nPop,1);
for i ¼ 1:nPop
if i~ ¼ 1
pop(i).Position ¼ randi([0 1],VarSize);

else
pop(i).Position ¼ ones(VarSize);

end
[pop(i).Cost, pop(i).Out] ¼ CostFunction(pop(i).Position);

end
% Non-Dominated Sorting
[pop, F] ¼ NonDominatedSorting(pop);
% Calculate Crowding Distance
pop ¼ CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F] ¼ SortPopulation(pop);
%% NSGA-II Main Loop
for it ¼ 1:MaxIt
% Crossover
popc ¼ repmat(empty_individual, nCrossover/2,2);
for k ¼ 1:nCrossover/2
i1 ¼ randi([1 nPop]);
p1 ¼ pop(i1);
i2 ¼ randi([1 nPop]);
p2 ¼ pop(i2);
[popc(k,1).Position, popc(k,2).Position] ¼ Crossover(p1.Position,p2.Position);
[popc(k,1).Cost, popc(k,1).Out] ¼ CostFunction(popc(k,1).Position);
[popc(k,2).Cost, popc(k,2).Out] ¼ CostFunction(popc(k,2).Position);

end
popc ¼ popc;
% Mutation
popm ¼ repmat(empty_individual, nMutation,1);
for k ¼ 1:nMutation
i ¼ randi([1 nPop]);
p ¼ pop(i);
popm(k).Position ¼ Mutate(p.Position,mu);
[popm(k).Cost, popm(k).Out] ¼ CostFunction(popm(k).Position);

end
% Merge
pop ¼ [pop
popc
popm]; %#ok

% Non-Dominated Sorting
[pop, F] ¼ NonDominatedSorting(pop);
% Calculate Crowding Distance
pop ¼ CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F] ¼ SortPopulation(pop); %#ok
% Truncate
pop ¼ pop(1:nPop);
% Non-Dominated Sorting
[pop, F] ¼ NonDominatedSorting(pop);
% Calculate Crowding Distance
pop ¼ CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F] ¼ SortPopulation(pop);
% Store F1
F1 ¼ pop(F{1});
F1¼GetUniqueMembers(F1);
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Number of F1 Members ¼ ' num2str(numel(F1))]);
% Plot F1 Costs
figure(1);
PlotCosts(F1);
pause(0.1);

end
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(continued )

MATLAB code of the feature selection technique applied

function [z, out] ¼ FeatureSelectionCost(s,data)
% Read Data Elements
x ¼ data.x;
t ¼ data.t;
% Selected Features
S ¼ find(s~ ¼ 0);
% Number of Selected Features (First goal of optimization that should be minimized)
nf ¼ numel(S);
% Ratio of Selected Features
rf ¼ nf/numel(s);
% Selecting Features
xs ¼ x(S,);
% Weights of Train and Test Errors
wTrain ¼ 0.4;
wTest ¼ 1-wTrain;
% Number of Runs
nRun ¼ 5;
EE ¼ zeros(1,nRun);
for r ¼ 1:nRun
% Create and Train LSSVM
results ¼ CreateAndTrainLSSVM(xs,t);
% Calculate Overall Error
EE(r) ¼ wTrain � results.TrainData.E þ wTest � results.TestData.E;

end
EE ¼ sort(EE,'ascend');
EE ¼ EE(1:3);
E ¼ mean(EE); % The second goal of the optimization (error of the prediction) that should be minimized.
if isinf(E)

E ¼ 30;
end
% Calculate Final Cost
z ¼ [nf

E]; %First element is for number of selected feature (first goal) and the second element is the error of the prediction (second goal) with that number of element or selected
feature.

% Set Outputs
out.S¼S;
out.nf ¼ nf;
out.rf ¼ rf;
out.E ¼ E;
out.z ¼ z;

end
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