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a b s t r a c t

The digital twin, as the decision center of the automated drilling system, incorporates physical or data-
driven models to predict the system response (rate of penetration, down-hole circulating pressure,
drilling torques, etc.). Real-time drilling torque prediction aids in drilling parameter optimization, drill
string stabilization, and comparing the discrepancy between observed signal and theoretical trend to
detect down-hole anomalies. Due to their inability to handle huge amounts of time series data, current
machine learning techniques are unsuitable for the online prediction of drilling torque. Therefore, a new
way, the just-in-time learning (JITL) framework and local machine learning model, are proposed to solve
the problem. The steps in this method are: (1) a specific metric is designed to measure the similarity
between time series drilling data and scenarios to be predicted ahead of bit; (2) parts of drilling data are
selected to train a local model for a specific prediction scenario separately; (3) the local machine learning
model is used to predict drilling torque ahead of bit. Both the model data test results and the field data
application results certify the advantages of the method over the traditional sliding window methods.
Moreover, the proposed method has been proven to be effective in drilling parameter optimization and
pipe sticking trend detection. Finally, we offer suggestions for the selection of local machine learning
algorithms and real-time prediction with this approach based on the test results.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Digital twin technology (Qi et al., 2021; Tao et al., 2022; Sottet
and Pruski, 2023) is on the rise in the drilling industry for moni-
toring and optimizing processes. By creating simulations that
replicate equipment states and rig-formation interactions using
numerical models, digital twin technology predicts system re-
sponses under varying input parameters. These prediction capa-
bilities aid in decision-making for future drilling operations,
ultimately improving efficiency and mitigating risks.

The main parameters reflecting the drilling process are weight
on bit (WOB), rotating speed (RPM), mud-flow in (MFI), etc., which
are controllable parameters, and several parameters could indicate
the response of the rig-formation system, such as rate of penetra-
tion (ROP), surface torque, standpipe pressure, mud-flow out, etc.,
which are uncontrollable parameters. Investigations on
.
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controllable and uncontrollable parameters can help to model the
interacting mechanism of the rig-formation system. The simulation
and prediction methods of ROP (Hegde et al., 2017; Barbosa et al.,
2019; Najjarpour et al., 2020; Negara and Saad, 2020; Ren et al.,
2022) and standpipe pressures (Erge and van Oort, 2021, 2022;
Elmgerbi et al., 2022) etc., are well studied by previous research.
However, the studies of drilling torque prediction are few
(Marquez, 2021; Song et al., 2022).

During the drilling of a well, energy is applied by surface
equipment to the rock through the drill string and bit, creating a
channel between the reservoir fluid and surface pipelines. The
surface torque measured at the top drive or rotary table is the sum
of the torque of the drill bit when breaking rock and the friction
between drilling strings with the wellbore and drilling fluids.
During drilling, improving the ROP is an important goal of drilling
optimization. Field experience shows that increasing WOB can
generally enhance ROP. However, asWOB increases, torquewill also
increase. High torque indicates a high working load of drilling tools
both on the surface and down-hole; the abnormal trend of the
surface torque signal may indicate a formation change on the
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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down-hole complex (such as pipe sticking, bit wear, etc.).
Furthermore, torque is a crucial variable in the computation of
mechanical specific energy (MSE) (Teale, 1965; Oyedere and Gray,
2020). The energy used for rock breaking during drilling is
known as MSE, and it is a useful indicator of both drilling efficiency
and down-hole conditions. In the digital twin system, predicting
the surface torque to be drilled ahead of the bit can help the drilling
technicians optimize the drilling parameters and provide risk
warning by comparing the signal trend of surface torque with the
predicted torque. Thus, it is crucial to estimate surface torque in real
time during drilling.

At present, predicting surface torque ahead of the bit could be
achieved by physical models, such as the soft string model
(Johancsik et al., 1984) and the stiff string model (Ho, 1988). The
axial force, side force, and torque distribution of drill strings are
theoretically calculated, and the surface torque is the sum of the
torque along the drill string. Gao (1994) derived the integral me-
chanical model from the basic equations of down-hole strings. Wu
and Juvkam-Wold (1995) established the torque and drag (T&D)
predictionmodel of the down-hole string, considering the buckling
effect. McSpadden and Newman (2002), Menand et al. (2006), and
Mitchell et al. (2015) studied the influences of pipe joints on T&D.
Huang and Gao (2019, 2021) fully considered the coupling effects of
joint and buckling effects, then introduced the overall stress model
based on descriptions of local models. Samuel and Huang (2020)
proposed a dynamic torque and drag model that takes into ac-
count the impacts of viscous forces, drill fluid, tubular vibration,
and velocity-dependent friction forces, overcoming the shortcom-
ings in previous models. However, the traditional physical model of
the pipe string fails to fully consider factors such as mud viscosity,
stick-slip, buckling, whirl, key-way effect, etc., and this method is
not suitable for real-time deployment due to low efficiency and
poor flexibility. In addition, these physical models require down-
hole torque as input for bottom-up calculations, and the down-
hole torque cannot be obtained without down-hole measuring
tools. In the field, surface torque is mostly monitored using a rule-
based approach, in which experienced experts define a certain
value range to determine if the signal is normal. The rule-based
method often provides inaccurate warnings as it cannot consider
the influence of controllable parameters for surface torque.
Therefore, a robust and flexible method to predict and monitor
surface torque is needed.

The development of modern data science, especially machine
learning, provides powerful tools for modeling high-dimensional,
nonlinear, and complex processes (Liu et al., 2020). Oyedere and
Gray (2020) used multiple machine learning algorithms to predict
drilling torque-on-bit, and the results indicate that machine
learning algorithms can effectively model the nonlinear relation-
ship between drilling features. Marquez (2021) used the sliding
window method and the XGBoost algorithm to update the model
every 60 m and predict the drilling torque ahead of the bit.
Nevertheless, the data from a short window restricts the temporary
model's capacity to predict during sliding. Bai et al. (2022) studied a
hybrid model by combining the physical model and machine
learning methods to predict drilling torque in real time with high
stability and interpretability. Song et al. (2022) proposed a BP-LSTM
network to predict surface torque. The historical data points of 12
wells were used to train an offline model, and 3 wells were tested
with remarkable performance. However, the impracticality of the
offline model is evident due to its inability to adjust to dynamic
down-hole environmental factors.

This paper proposes a just-in-time learning (JITL) model for
predicting drilling torque accurately and reliably, optimizing drilling
parameters, and detecting anomalies in real-time. The JITL frame-
work was particularly designed for dynamically selecting training
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samples from historical data to support model training. The local
machine learning model was used to establish the relationship be-
tween controllable drilling parameters and surface torque. Our
model was validated by field data compared to the traditional sliding
window method for real-time drilling torque prediction. It is sig-
nificant to improve drilling efficiency and reduce risks.

2. Methodology

2.1. Just-in-time learning-based framework

Just-in-time learning (Cybenko, 1996), also known as lazy
learning (Galv�an et al., 2011) and local weighted learning (Yin et al.,
2016), is a representative local learning framework that advances in
dealing with nonlinear, time-varying behavior. JITL is widely used
in soft sensor modeling and process monitoring (Jin et al., 2019,
2020), which can better reflect the local dynamics in engineering
(Liu and Gao, 2015; Li et al., 2021; Guo et al., 2020; Jiang and Ge,
2022; Zhang et al., 2022), but is rarely used in petroleum engi-
neering. With historical data in the database, local models are
dynamically built by the data most similar to the feature for pre-
diction. Different from traditional global modeling methods that
use all historical data to train the model, JITL features two aspects.
(1) All available modeling data is stored in the database, and the
local model is trained using queried local data from the database.
Only parts of the samples in the database that are most similar to
the query features are used to build the model, instead of all his-
torical datasets. Therefore, JITL is an online, non-parametric
modeling technology. (2) The local model constructed will be dis-
carded after predicting the corresponding features until the next
prediction, and then a new local model will be built.

The JITL-based drilling torque prediction framework is shown in
Fig.1. In the historical database, Xi refers to input features for torque
prediction, such as depth,WOB, hook load, RPM,MFI, etc., and TQi is
the label corresponding to Xi. Xh;i refers to the input features for
torque prediction in a specific scenario. When drilling to depth h
and a Xh;i is determined, the samples whose input features are
similar to Xh;i are selected for local model building. The similar
features in historical data and predictions are marked with the
same color in the diagram. Once a prediction is finished, another
cycle of sample selection and local model training is to be
conducted.

2.2. Similarity measuring metrics

In the JITL framework, the similarity measuring metric directly
impacts the quality of the local model. The most commonly used
similarity measuring metrics are Euclidean distance and cosine
similarity (Zhang and Rasmussen, 2001; Liu et al., 2019; Kirişci,
2023).

For multi-dimensional vectors A and B, the formulas for calcu-
lating Euclidean distance and cosine similarity are:

distðA;BÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

ðAi � BiÞ2
vuut (1)

where, distðA;BÞ denotes the distance between the k-dimensional
vector A and B,

cosðA;BÞ ¼ A$B
k A k , k B k (2)

where, cosðA;BÞ denotes the cosine value of the angle between
vector A and B.



Fig. 1. Diagram of JITL based torque prediction.
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As shown in Fig. 2, the Euclidean distancemeasures the absolute
distance between points in space, which is directly related to the
feature values of each point. Cosine similarity measures the
included angle of the space vector, which can reflect the com-
monality of each dimension between the two vectors. However, in
some cases, such as vectors [1, 2, 3, 4] and [4, 3, 2, 1], their included
angles differ greatly, but their distances are relatively close. Another
example is the vectors [1, 2, 3, 4] and [2, 4, 6, 8], where the included
angle is 0 but the distance is large. From this point of view,
Euclidean distance and cosine similarity measure the similarity
from different perspectives, and the combination of the two
methods is expected to provide an integral measure of similarity.

In this paper, cosine similarity and Euclidean distance are uti-
lized for similarity measurement on normalized data. This
approach ensures that the selected related samples have high
similarity both in terms of direction andmagnitude. The diagram of
the similarity measuring metric is shown in Fig. 3.
Fig. 2. Diagram of Euclidean distance similarity and cosine similarity.
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2.3. Online prediction methods

Online prediction methods continuously update models in real
time during ongoing processes to adapt to changing conditions. As
shown in Fig. 4(a), in the online prediction process based on JITL,
newly transmitted field data is added to the historical database
when drilling to the next predetermined well depth (Di), and then
correlated samples are selected in accordance with the procedure
in Section 2.2 to build different local models for each test sample to
predict. The traditional online prediction method in the drilling
industry is the sliding window (SW) method (Marquez, 2021; Yang
et al., 2022). As shown in Fig. 4(b), the SW method dynamically
extracts drilling datawithin the current depth window to construct
a model and predict all the test samples. When drilling to the next
predetermined depth of the well, a new model will be built based
on the data from the new window and used to predict, and the
historical data before this window will be discarded.

Overall, the following two factors reflect the distinctions be-
tween the JITL and SW methods, which are also the benefits and
innovations of the JITL method. One of them is that the modeling
data is different. The SW method (Fig. 4(b)) employs data within a
sliding fixed well depth window as modeling data, while the JITL
method (Figs. 1 and 4(a)) selects portions of historical data that are
similar to the test sample. Another is that the model's prediction
Fig. 3. Diagram of the similarity measuring metric.



Fig. 4. Diagram of the online prediction methods. (a) JITL-based online prediction; (b) sliding window online prediction.
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range is different. For the test samples at a certain distance ahead of
the bit, the SWmethod (Fig. 4(b)) built a model to predict every one
of them,while the JITL approach (Fig.1) built a local model that only
predicts the corresponding sample, and every test sample has a
corresponding local model to predict it.
2.4. Machine learning methods for regression

According to the characteristics of JITL, there are three principles
for the selection of machine learning models: (1) high capacity for
small data modeling is necessary, because the data needed to build
local models is generally limited, which leads to algorithms for big
data processing such as deep neural networks not being suitable.
(2) Amounts of the local model will be trained in real-time, the
computing complexity of the machine learning algorithm should
be low, and non-parameter methods are preferred, because there is
no need to train high hyper-parameters. (3) For industrial deploy-
ment, the robustness of the method is important.

Therefore, Linear Regression (LR), Gaussian Process Regression
(GPR), and Support Vector Machine (SVM) are evaluated for local
model building in the JITL framework.
2.4.1. Multiple linear regression
LR (Narula and Wellington, 2007) features a simple structure,

rapid modeling, and good interpretability, which is expressed as,

yi ¼ k0 þ
Xm
i¼1

kixi (3)

where, xi is the explanatory variable, yi is the dependent variable, ki
is the slope of the line, and k0 is the intercept.

The model can be regarded as an ordinary normal linear model.

Under the normal assumption, for the featurematrix X, if XTX is full
rank, the least squares estimate of parameter k is,

bk ¼
�
XTX

��1
XTy (4)

and the estimated value of y is,

by ¼ Xbk (5)
433
2.4.2. Gaussian process regression
GPR (Williams and Rasmussen, 2006; Chen et al., 2022) is a non-

parametric machine learning method and provides an uncertain
description of prediction, which is conducive to ensuring robust-
ness in deployment.

The Gaussian process is a set of random variables in a joint
Gaussian distribution. In essence, the Gaussian process is a multi-
variate Gaussian distribution, which can be expressed as follows,

f ðxÞ � GP
h
mðxÞ; kðx; x0Þ þsn

2I
i

(6)

where, GP is Gaussian distribution. mðxÞ is the predicting expec-
tation with input x. x is the feature vector. x0 is the feature vector of
the test set. sn2I is Gaussian random noise matrix. kðx; x0Þ is a
covariance function that represents the dependency between x and
x0. The Radial Basis Function (RBF kernel) is used as the covariance
function in this paper,

Kðx; x’Þ¼ exp
�
� 1
2s2

kx� x’k2
�

(7)

where, s is the signal variance.
With the prior defined in Eq. (6), the Gaussian process regres-

sion is designed to learn the function from the training data. For
given new points x*, the joint distribution of the training outputs y
and the predictive outputs y* can be given as follows,

�
y
y*

�
� N

	
0;

�
KðX;XÞ þ sn

2I KðX; x*Þ
Kðx*;XÞ Kðx*; x*Þ

�

(8)

where, KðX;XÞ represents the covariance matrix of training data.

Kðx*; x*Þ represents the variance of test point. KðX; x*Þ ¼ Kðx*;XÞT
represents the covariance matrix between the test data and the
input of the training data set.

The mean value of the prediction by with input x* is,

by ¼ Kðx*;XÞ½KðX;XÞ þ sn
2I��1y (9)

The variance of prediction covðbyÞ is,
covðbyÞ ¼ kðx*; x*Þ � Kðx*;XÞ½KðX;XÞ þ sn

2I��1KðX; x*Þ (10)

According to statistics, to ensure that a 95% probability of the



Table 1
Description of features.

No. Feature name Unit Data range

1 Depth m 0e8500
2 WOB kN 0e300
3 Hook load kN 300e3000
4 RPM r/min 0e105
5 MFI L/s 0e73
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observations will be within the confidence interval, the standard
deviation of the predictions is always multiplied by a coefficient of
1.96, and the confidence interval is,

hby�1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðbyÞq

; byþ1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðbyÞq i

(11)

2.4.3. Support vector machines
With the absence of the curse of dimensionality, better gener-

alization due to structural risk minimization, less prone to over-
fitting, and fewer training features, SVM performs well in
robustness (Awad et al., 2015; Olatunji and Micheal, 2017).

SVM maps the input vector to the high-dimensional feature
space to conduct prediction, and the formula is,

f ðxÞ¼WT4ðxÞ þ b (12)

where,W is the weight vector, 4ðxÞ is the feature mapping function
and b is the bias.

Since SVM formulations are done within the context of convex
optimization theory, the general methodology is to initiate the
formulation of the problem as a constrained optimization problem,
subsequently formulate the Lagrangian, and then take the condi-
tions for optimality to ultimately solve the problem in the dual
space of Lagrange multipliers. The estimated value is,

by¼ Xm
i¼1

a0kðx; x0Þ þ b (13)

where, a0 is Lagrange multiplier term.

2.5. Hyperparameter optimization

For SVM and LR, hyperparameter optimization involves sys-
tematically exploring various combinations of hyperparameters,
such as through grid search, to identify the most effective settings.
This procedure demands significant computational resources and
may be inefficient. Thus, we predetermine multiple hyper-
parameter combinations for the model. Each combination is then
assessed via k-fold cross-validation. Ultimately, we select the most
appropriate parameter combination to establish the model.

The hyperparameter of GPR is Q ¼ fs; sng. By utilizing the
negative logarithmic likelihood function, we can calculate the
partial derivative of this hyperparameter. Subsequently, the con-
jugate gradient method can be applied to minimize this partial
derivative, thereby attaining the optimal hyperparameter.

2.6. Evaluating metrics

The root mean square error (RMSE) and prediction error vari-
ance (PEV) are selected to evaluate the performance of the models.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðyi � byiÞ2
vuut (14)

where, m is the number of samples; i is the index of a sample; yi is
the observation of surface torque at a certain depth; byi is the pre-
diction of surface torque at a certain depth.

PEV¼ 1
m

Xm
i¼1

ðei � beiÞ2 (15)
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where, ei ¼ yi � byi is the prediction error; bei ¼ 1
m
Pm

i¼1ei is the
mean of the prediction error. RMSE indicate the accuracy of models,
and PEV indicate the stability of prediction error.
3. Experiments and results

3.1. Dataset

The raw data used in this paper was collected from two ultra-
deep and horizontal wells in a field in China. The collected data is
divided into static and dynamic sections. Static data includes dril-
ling logs, wellbore structure, bottom hole assembly, bit selection,
etc. Dynamic data is collected by physical sensors on the rig once
every 1 s, including time, depth, WOB, hook load, RPM, MFI, surface
torque, and so on. Among them, depth, WOB, hook load, RPM, and
MFI are the input features of the model, and surface torque is the
output of the model. The description of features is shown in Table 1.

In this paper, we focus on torque prediction in rotary drilling.
Firstly, we extract the data in rotary drilling condition from themud
logging data, following a specific extraction rule.

WOB>0 and RPM>0 and MFI>0 (16)

Then, the extracted data are normalized according to Eq. (17),

xi
0 ¼ xi � xmin

xmax � xmin
(17)

where, xi 0 is the normalized value in row i of a certain column in the
data; xi is the value in row i of the column before normalization;
xmin is the minimum value of the column; xmax is the maximum
value of the column.

Next, calculate the Euclidean distance and cosine similarity
between the normalized query sample and the database samples
according to Eqs. (1) and (2), and sort them according to the sim-
ilarity to extract the samples with high similarity as the training set.
Finally, build a local model. The workflow is shown in Fig. 5.
3.2. Effects of local modeling data sample numbers and regression
methods

The number of training data points for the local model is critical
to predicting performance. A large number of training data may
incorporate dissimilar samples that could mislead the model
training, while a small number of training data may decrease the
prediction accuracy of the local model (Zhao et al., 2010). To explore
the influence of different training samples on prediction, 19425
samples from the drilled hole with a length of 3505 m are used as
historical data, and SVM, GPR, and LR are used for the experiment.

It can be seen from Fig. 6 that with the increase in training
sample number, the RMSE of the three models first decreases and
then increases, with the optimal number of train data points in this
well section being 240. Compared with the other two models, SVM
has the best prediction performance.

The prediction and observation are compared in Fig. 7. It is



Fig. 5. Workflow of torque prediction with JITL.
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shown that with the increase of the train data number, the pre-
diction of the model gradually shifts downward. This is caused by
the larger training set containing more shallow formation data that
is dissimilar to prediction features.

Considering the influence of the different numbers of samples in
the historical database, five experiments were conducted on
different well sections. The experimental results are shown in
Table 2.

It is shown by Table 2 that the number of optimal train data
generally increases with the increase in database sample, but the
minimum cosine similarity and the maximum Euclidean distance
are relatively stable, which are 0.9998 and 0.1 respectively. To
reduce the workload of optimal train data fine-tuning in real-time
prediction, fixed thresholds of the cosine similarity and the
Euclidean distance are used to select the train data for the local
model, which are 0.9998 and 0.1 respectively.
Fig. 6. RMSE of different numbers of train data
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3.3. Performance test of the sliding window method and the JITL
method

To verify the performance of the JITL method, the JITL frame-
work and the SW framework of the three machine learning
methods are compared respectively. The experimental results are
shown in Table 3 and Fig. 8.

As shown in Tables 3 and it is obvious that the JITL model has
better prediction performance than the SW models, the RMSE of
SVM, GPR, and LR with the JITL framework are 12.65%, 13.61%, and
14.32% lower than the SW method. In addition, the JITL method is
more stable than the SW method, with PEV decreasing by 11.06%,
13.74%, and 25.23% for the three local machine learning models.
Moreover, the JITL model will require more training time than the
SW model since each test sample must be compared to every
sample in the historical database to determine similarity. To pre-
vent the training time from growing as the number of database
samples rises, we can categorize the samples in the historical
database.

It can be seen from Fig. 8 that at 3505.1 m, the torque increases
significantly, and the JITL model can still maintain high accuracy
while the SW model cannot. This indicates that the JITL model's
predictive capability in rapidly changing down-hole conditions is
notably superior to that of the SW model.
3.4. Performance test of different prediction distances

As drilling advances, the model should reliably forecast surface
torque ahead of the drill bit. Therefore, we employed SVM for
simulating and predicting drilling outcomes at depths of 3100 and
3400 m. The outcomes are detailed in Table 4 and Fig. 9, indicating
themethod's efficacy in accurately predicting within the next 40m.
However, as the prediction distance extends, the error incremen-
tally rises, attributable to variations in stratigraphic conditions.

Therefore, by updating predictions at specified intervals ideally
less than 40 m and continuously integrating real-time data from
the field into the historical database, we can ensure the accuracy of
the height.
3.5. Comparison of real-time prediction of the SW method and the
JITL method

To test the accuracy and robustness of the JITL method in real-
time drilling operations, we utilized SVM as an example to
points and different regression methods.



Fig. 7. Predictions of different numbers of train samples and different regression methods. (a) the number of train samples is 100; (b) the number of train samples is 240; (c) the
number of train samples is 500; (d) the number of train samples is 1000.

Table 2
Experimental results in different well sections.

Number of samples in the historical database 2833 7786 10313 19452 26652 32042

The optimal number of train data for local model 18 25 105 240 172 288
Minimum cosine similarity 0.99986 0.99984 0.99977 0.99979 0.99985 0.99979
Maximum Euclidean distance 0.091 0.093 0.089 0.102 0.096 0.099

Table 3
RMSE, PEV and training time of the SW model and the JITL method.

No. Method RMSE PEV Training time, s

1 JITL SVM 0.4023 0.1646 13.71
2 SW SVM 0.4606 0.1908 0.33
3 JITL GPR 0.4107 0.1702 21.66
4 SW GPR 0.4777 0.1973 6.41
5 JITL LR 0.4739 0.2036 9.02
6 SW LR 0.5531 0.2671 0.02
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predict the drilling torque in the next 40 m. Additionally, new field
data was incorporated into the historical database every 40 m to
replicate the ongoing drilling process. Table 5 and Fig.10 display the
entire well's (400e8500 m) experimentally compared results be-
tween the JITL method and the SW method.

Table 5 illustrates that the JITL method outperforms the SW
method, showing a 23.03% decrease in RMSE and a 25.75% decrease
in PEV, with sustained accuracy and robustness. As depicted in
Fig. 10, the JITL method exhibits greater reliability and accuracy
compared to the SW method. However, a small fraction of
436
predictions show significant errors (Fig. 10(a)), potentially attrib-
uted to insufficient similar data.
4. Applications and discussion

4.1. Drilling parameters optimization

During drilling, all parameter combinations within a reasonable
range are taken as test features and predicted, and the predictions
can guide the optimization of drilling parameters and assist field
decision-making. SVM is used as the modeling algorithm in this
experiment to simulate the parameter optimization of the next step
when drilling to 8200 m. Taking WOB & RPM and WOB & MFI as
examples, we predict the test samples under different parameter
combinations, and the feedback results are shown in Fig. 11.

On the one hand, Fig. 11 shows that torque grows in proportion
to WOB, which is in line with field cognition and physical princi-
ples. On the other hand, since the drilling has now reached the
horizontal part and the PDM drill is providing RPM, which makes
RPM positively linked with MFI, the impact of RPM (Fig. 11(a)) and



Fig. 8. Comparison between the SW method and the JITL method of different machine
learning algorithms.

Table 4
RMSE, PEV of different prediction distances.

Test set, m Prediction distance, m RMSE PEV

3100e3180 10 0.8093 0.3131
40 0.8264 0.6264
80 1.1085 0.7662

3400e3480 10 0.5667 0.3176
40 0.6972 0.7057
80 1.1275 0.9471
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MFI (Fig. 11(b)) on torque is essentially the same. With the torque
tolerance of the top drive as 20 kN$m, the parameter combinations
corresponding to the red squares are reminded that the surface
torque will be too high and should be avoided. The current drilling
parameter combination shown by the black pentagram in Fig. 11(b)
is located in this area. Therefore, it is recommended to reduce WOB
and increase MFI at this time to prevent high torque generation and
ensure drilling efficiency.

4.2. Anomaly detection

The confidence interval provided by GPR helps detect anomalies
(Pang et al., 2014, 2017). Based on the idea of the digital twin, the
GPR model trained using normal drilling data simulates the virtual
drilling system operating normally. The predicted confidence in-
terval encompasses all potential torque values within normal op-
erations. If the observed torque surpasses the GPR model's
confidence interval and persists for a specific duration, it indicates a
high probability of an abnormality in the actual system.

The samples before drilling to 4660 m are used as the database
to predict the surface torque of the section to be drilled. The
observed surface torque will be generated successively during the
drilling process. It can be seen from Fig. 12 that at 4702 m, the
torque suddenly increases and continues to exceed the confidence
interval. Through checking the drilling log of the well, the top drive
was stopped at 4702.84 m, and the drilling tool was stuck. The
results of the analysis show that this method is effective for
anomaly detection.

4.3. Discussion

Our method was confirmed to be effective for real-time drilling
torque prediction, which helps optimize drilling parameters to
avoid high torque and detect pipe sticking trends. Due to filtering
modeling data through similarity, our method is more accurate
than the traditional sliding window method. In real-time predic-
tion testing of the entire well, our method reduces RMSE by 23.03%
and PEV by 25.75% compared with the sliding window method.

The data-driven drilling torque prediction models can be
divided into the following two types: offline models and online
models. The BP-LSTM network (Song et al., 2022), which uses huge
data from more than a dozen wells in the same area to build a
model and predict the torque of other wells, is the representative
offline model. However, because the offline model cannot adapt
itself to the changing down-hole environment (formation property,
bit wear, etc.) (Alali et al., 2021), its practicability is restricted.
Online models have good adaptability and can perform real-time
correction according to changes in the down-hole environment,
upon which our study was based. The most commonly used online
prediction method for drilling torque is the sliding windowmethod
(Marquez, 2021), which can dynamically extract drilling data
within the current depth window for modeling and prediction.
However, the data from a show window restricts the temporary
model's capacity to predict during sliding. Thus, in the experiment,
the sliding window method and our model were compared in
Sections 3.3 and 3.5. The comparison in Table 3 and the error dis-
tribution in Fig. 10(b) demonstrate that our method is more
effective.

Using similar drilling parameters generally leads to comparable
responses in drilling systems. Our approach involves dynamically
selecting historical data samples that closely resemble the test
sample for modeling. This enables us to address significant changes
in parameters such as WOB or RPM by identifying historical data
with similar WOB or RPM. This method is particularly effective in
situationswhere drilling parameters experience sudden and drastic



Fig. 9. Prediction performance test of different prediction distances. (a) from 3100 to 3180 m; (b) from 3400 to 3480 m.

Table 5
RMSE and PEV of different methods in real-time prediction.

No. Method RMSE PEV

1 JITL 1.2445 1.9281
2 SW 1.6169 2.5968

Fig. 10. Comparison between different methods in real-time prediction. (a) scatter
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fluctuations, as shown in Fig. 8 where the depth is at 3505.1 m. In
contrast, the traditional sliding window method has limited pre-
diction accuracy as it only considers data within a fixed display
window, potentially missing important similar samples for effec-
tive modeling.
diagram of prediction and observation; (b) box plot of the error distribution.



Fig. 11. Heat map of WOB & RPM (a) and WOB & MFI (b) optimization. The current drilling parameters are: The depth is 8200 m, the WOB is 50 kN, the RPM is 16 r/min, the MFI is
11.6 L/s, and the hook load is 2783 kN.
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Therefore, ensuring similarity between the modeling data and
the test sample is essential for accurate predictions. Furthermore,
while the choice of machine learning algorithms influences pre-
dictive performance, it is not a significant factor, as shown in Fig. 7.
Thus, instead of solely depending on the most accurate SVM,
439
selecting suitable machine learning algorithms based on their
specific purpose is recommended. For example, anomaly detection
can benefit from utilizing the confidence interval provided by GPR.

Our approach is limited in two aspects. One is that the predic-
tion accuracy will be impacted if there aren't enough similar



Fig. 12. Diagram of anomaly detection.
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samples in the historical database. A shortage of training data will
lead to an increase in inaccuracy, as seen by the results in Fig. 6. The
other one is slow prediction speed, as shown by the findings in
Table 3. Since, in order to assess similarity, each test sample needs
to be compared to every sample in the historical database. To
overcome these limitations, research will be done in the future on
combining off-set well data with target well data using multi-
source information fusion to enrich the historical database and
improve prediction performance. In addition, we will investigate
the efficient classification of databases, including the relative size of
drilling parameters, formation information, etc., to stop the pre-
diction time from increasing as the number of database samples
increases.
5. Conclusions

In this work, a local modeling and prediction method of surface
torque while drilling based on JITL is proposed. This paper applies
JITL technology to the drilling process for the first time to realize
the dynamic prediction of surface torque ahead of the drill bit. The
predictionmodel can guide the optimization of drilling parameters,
and quickly detect torque anomalies by comparing the predicted
trend with the actual value. The main points in this study are as
follows:

(1) Compared with the sliding window model, JITL has higher
accuracy and better robustness. The RMSE of SVM, GPR, and LRwith
the JITL framework are 12.65%, 13.61%, and 14.32% lower than the
SW method, and the PEV decreased by 11.06%, 13.74%, and 25.23%.
In real-time prediction testing of the entire well, the JITL method
reduces RMSE by 23.03% and PEV by 25.75% compared with the
sliding window method.

(2) In the framework, SVM performs best and is recommended
for parameter optimization, GPR allows for confidence in-
terval estimation useful for anomaly detection, and LR is
ideal for enhancing time efficiency.

(3) This method demonstrates high prediction accuracy within a
40-m range. It is advisable to update the predictions at pre-
determined intervals, ideally less than 40 m, to maintain
height accuracy. Real-time data from the field continually
feeds into the historical database for improved performance.
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