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a b s t r a c t

Internal multiple interference, affecting both seismic data processing and interpretation, has been
observed for long time. Although great progress has been achieved in developing a variety of internal-
multiple-elimination (IME) methods, how to increase accuracy and reduce cost of IME still poses a
significant challenge. A new method is proposed to effectively and efficiently eliminate internal multi-
ples, along with its application in internal-multiple-eliminated-migration (IMEM), addressing this issue.
This method stems from two-way wave equation depth-extrapolation scheme and associated up/down
wavefield separation, which can accomplish depth-extrapolation of both up-going and down-going
wavefields simultaneously, and complete internal-multiple-elimination processing, adaptively and effi-
ciently. The proposed method has several features: (1) input data is same as that for conventional
migration: source signature (used for migration only), macro velocity model, and receiver data, without
additional requirements for source/receiver sampling; (2) method is efficient, without need of iterative
calculations (which are typically needed for most of IME algorithms); and (3) method is cost effective:
IME is completed in the same depth-extrapolation scheme of IMEM, without need of a separate pro-
cessing and additional cost. Several synthesized data models are used to test the proposed method: one-
dimensional model, horizontal layered model, multi-layer model with one curved layer, and SEG/EAGE
Salt model. Additionally, we perform a sensitivity analysis of velocity using smoothed models. This
analysis reveals that although the accuracy of velocity measurements impacts our proposed method, it
significantly reduces internal multiple false imaging compared to traditional RTM techniques. When
applied to actual seismic data from a carbonate reservoir zone, our method demonstrates superior clarity
in imaging results, even in the presence of high-velocity carbonate formations, outperforming conven-
tional migration methods in deep strata.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Internal multiples are commonly considered as an interference
in seismic exploration. Because of strong energy, and small differ-
ences in traveling velocity compared to primary waves, internal
multiples make significant interference to both seismic data pro-
cessing (such as velocity analysis and imaging), and seismic data
interpretation. Therefore, it is widely recognized that, it is neces-
sary to perform internal multiple elimination before imaging
u).

y Elsevier B.V. on behalf of KeAi Co
(Yilmaz, 2001; Li and Qu, 2022).
However, eliminating internal multiples has historically been a

challenging task in seismic data processing. Especially, how to in-
crease accuracy and reduce cost of internal-multiple-elimination
methods is still an active research topic today. To address this
problem, numerous amounts of research works have been con-
ducted, and a variety of different methods have been developed,
during past decades. Many important works and articles on this hot
topic are excellently summarized by Weglein and Dragoset (2005)
in SEG Reprint, Matson and Dragoset (2005), Valenciano and
Chemingui (2015) in Leading Edge, and Zhang et al. (2021) in
Geophysics.
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In general, four kinds of approaches for eliminating internal
multiples have been developed in the past few years. The first kind
of approach was proposed by Jakubowicz (1998), which, in prin-
ciple, is an extension of surface-related-multiple-elimination
(SRME; Verschuur et al., 1992) and applies both multidimensional
convolution and cross-correlations on reflection data acquired at
the measurement surface. The method does not necessitate prior
information of velocity, and can effectively repress internal multi-
ples in well-layered scenarios. Herrmann et al. (2008) further
developed it and proposed a data-adaptive method to solve the
amplitude error problem in predicted multiples, which vary
smoothly based on location, frequency band, and angle. The second
kind of approach is the common-focus-point (CFP) method.
Berkhout and Verschuur (2005) broadened the Surface-Related-
Multiple-Elimination method to internal multiple elimination,
and introduced the CFP approach. Building upon this, Ikelle (2006)
and Ikelle et al. (2009) introduced the concept of virtual seismic
events, and applied it to prediction and suppression of internal
multiples in synthetic data. Liu et al. (2013) proposed a newmethod
for the propagation of seismic waves (with virtual reflection and
virtual event), so that both forward and backward propagated
waves, through convolution with significant waves, can be used to
predict internal multiples. Qu et al. (2020) investigated the impacts
of Q-attenuation and multiples in deep-marine environments and
improved the quality and resolution of seismic imaging. Qu et al.
(2021) proposes a viscoacoustic RTM method for different-order
multiples to improve deep-sea seismic imaging by compensating
for attenuation and utilizing multiples to enhance resolution and
suppress artifacts. Chen et al. (2018) proposed a method to atten-
uatemultiples in poststack seismic data through the approximation
of conventional virtual events. In contrast to the traditional virtual
event technique, the method introduced does not necessitate data
regularization and provides greater computational efficiency,
though it demands travel time information for primary waves. The
third kind of approach involves the inverse scattering series (ISS)
theory and its implementation in seismic data, as suggested by
Weglein et al. (1997). The related methods are derived from the
scattering theory and provide a multidimensional direct-inversion
approach for suppressing internal multiples by identifying specific
subseries. While it offers high accuracy, it comes with significant
computational costs. Araújo et al. (1994), Coates and Weglein
(1996), Weglein et al. (2003), and Malcolm and de Hoop (2004)
applied the ISS method for internal multiple suppression under
various challenging scenarios. Li and Hu (2009) suggested a
methodology using the inverse scattering series based on the wave
equation and Born series, where internal multiples are forecasted
and eliminated through the creation of a subseries for surface-
related multiples. This approach requires no information about
the subsurface and is adaptable to various types of complex
structures. Behura et al. (2014) achieved internal multiple elimi-
nation and artifacts-free imaging, founded on the inverse scattering
theory. L€oer et al. (2016) proposed an internal-multiple-elimination
approach, based on inverse scattering series, which can provide
one-step approximate prediction for all orders of internal multiples
without need of model information. The fourth kind of approach is
Marchenko scheme based, which was introduced to seismic
application by Broggini et al. (2012, 2014), and Wapenaar et al.
(2014). The core of this theory and method consists of two
coupled equations called Marchenko equations, which are solved
through iteration to obtain the so-called focusing functions (Neut
et al., 2015; Meles et al., 2015). These focusing functions have the
capability to concentrate at any specified imaging location in the
subsurface, functioning as virtual sources or receivers responsible
for generating or recording Green's functions (Behura et al., 2014;
Slob et al., 2014). Meles et al. (2016) proposed an approximate
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approach to obtain primary reflections based onMarchenko theory,
combined with reference-surface repositioning and convolutional
interference. Thorbecke et al. (2017) and Jia et al. (2018) discussed
the implementation of Marchenko method for calculating
underground-to-surface Green's functions based on reflection
measurements at the free surface and the earth surface respec-
tively. A main advantage of this kind of approach is that related
methods only require information of refection response data at the
measurement surface, and direct-wave arrival time from the sur-
face to imaging points. Because of this and other advantages,
Marchenko method has been widely investigated and applied in
different seismic applications and geological scenarios (Staring
et al., 2016; Ravasi et al., 2016; Slob and Wapenaar, 2017; Lomas
and Curtis, 2020; Zhang and Slob, 2020). Gu and Wu (2021) and
Gu et al. (2023) retrieved primary reflections in the data domain
using the Gel'fand-Levitan-Marchenko equation. Nevertheless,
similar to the ISS approach, this kind of approach, in general, needs
a sophisticated iterative scheme, and comes with a significant
computational cost.

As we can see, a common feature for methods developed in the
field of internal-multiple-elimination (IME) and internal-multiple-
eliminated-migratio (IMEM), is that significant computational ef-
forts are required, and typically such efforts are related to some
iterative and sophisticated algorithms. In this document, we pro-
pose a different strategy and approach for IME and its application in
IMEM. This method relies on two-way wave equation depth-
extrapolation scheme (You and Cao, 2020; You et al., 2022) which
can complete depth-extrapolation of up-going and down-going
wavefields simultaneously and separate them from their two-way
counterparts efficiently, at each depth-extrapolation step. It is
proved that two-way depth-extrapolation scheme, combined with
suitable boundary conditions and associated up/down wavefield
separation, can remove internal multiples adaptively and efficiently
at each depth-extrapolation step, in a much simpler way, via
simultaneous depth-extrapolation of both up-going and down-
going waves. Taking advantage of this, we develop and achieve a
new internal-multiple-elimination and internal-multiple-
eliminated-migration method, with following features: using
same input data as that of conventional migration (source signature
e for migration use only, macro velocity model, and receiver data),
without need of additional requirements for source/receiver sam-
pling; and being highly efficient method, completing IME directly
without need of iterative calculations, and simultaneous IME and
IMEM in the same depth-extrapolation scheme.

Our manuscript is organized as follows: first, we describe two-
way wave equation depth-extrapolation scheme (with related
boundary conditions and up/down wavefield separation) used in
our proposed method; then, we describe theory of our proposed
internal-multiple-elimination, and internal-multiple-eliminated-
migration method, using two-way depth extrapolation scheme;
next, we conduct numerical tests on several synthetic models and
real data application to verify the effectiveness and accuracy of the
proposed method in internal-multiple-elimination, and illustrate
the performance and efficiency of the method in internal-multiple-
eliminated migration; finally, we conclude with conclusions.
2. Theory

2.1. Two-way depth wavefield extrapolation scheme

2.1.1. Review of classic two-way propagator matrix
Two-way wave equation based wavefield-depth-extrapolation

scheme, in space-frequency domain, reads (e.g. Kosloff and
Baysal, 1983):
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d
dz

Pðx;uÞ¼АPðxR;uÞ; (1)

where Pðx;uÞ ¼
�
pðx;uÞ
pzðx;uÞ

�
, А ¼

�
0 I
L 0

�
, L ¼ � v2

vx2 � v2

vy2 � u2

v2ðxÞ, I is

an identity matrix. pðx;uÞ and pzðx;uÞ are pressure and divertive
wavefield in the frequency domain, respectively; x ¼ ðx; y; zÞ ¼
ðxH; zÞ is space coordinates, defined in the Cartesian coordinate
system, while xH ¼ ðx; yÞ, is space coordinates in horizontal di-
rections. xR represents the measured surface, and x the depth-
extrapolated surface; x and xR have the same xHðx; yÞ but
different vertical coordinates: zR and zx; the difference in vertical
coordinates, between x and xR, is defined as Dz ¼ zx � zR.

The solution of Eq. (1) can be expressed in form of propagator
matrix (e.g. You et al., 2022):

Pðx;uÞ¼WPðxR;uÞ; (2)

where W is a propagator matrix, W ¼
�
W11 W12
W21 W22

�
, W11 ¼

W22 ¼ cosðkzDzÞ, W12 ¼ sinðkzDzÞ=kz, W21 ¼ � kz sinðkzDzÞ, and
kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

vx2 þ v2

vy2 þ u2

v2ðxÞ
q

. Note that kz defined here is a symbolic no-

tation which, in numerical practice, can be calculated in either
space-frequency domain or wavenumber-frequency domain. In this
paper, all mathematical equations and functions are expressions in
space-frequency domain.

The differences between the two-way wave equation-based
depth extrapolation scheme and the RTM algorithm are mainly
embodied in two aspects: (1) Memory cost of wavefield calculation:
the wavefield extrapolation implementation of RTM focuses on the
time domain within the time slices, frequently requiring the stor-
age of a huge wavefield matrix, e.g., x� y� z� tn for three-
dimensional cases (x, y and z present sizes of velocity model, tn
denotes the time samples); whereas the two-way wave equation
based depth extrapolation scheme implements the wavefield
extrapolation in the depth domain within the depth slices, which
requires storing a relatively smaller wavefield matrix, e.g., x� y� tn
for three-dimensional cases, reducing a storage dimension saves a
significant amount of storage space for wavefield computation. (2)
Wavefield propagation differences: as for the incident wavefield,
the reflection and transmission wavefields are generated on the
both sides of the interface using the RTM method while the up-
going wavefield (mirror image of the reflection wavefield) and
the down-going wavefield (transmission wavefield), as shown in
Fig. 1. Their differences in wavefield extrapolation implementation
Fig. 1. Wavefield propagation by using (a) RTM and (b) two-
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determine the potential application of the two-way wave equation
based depth extrapolation scheme in internal multiples
elimination.

2.1.2. Efficient up/down wavefield separation
To achieve an efficient separation of up-going and down-going

wavefields, at each depth depth-extrapolation step, the above
classic two-way wave equation wavefield depth-extrapolation
scheme is reformulated as (You et al., 2022)

P
_ðx;uÞ¼W

_
P
_ðxR;uÞ; (3)

where P
_ðx;uÞ ¼

�
pðx;uÞ
qðx;uÞ

�
, and W

_
is a reformulated propagator

matrix, W
_ ¼

2
4W

_

11 W
_

12

W
_

21 W
_

22

3
5, W

_

11 ¼ W
_

22 ¼ cosðkzDzÞ, W
_

12 ¼

W
_

21 ¼ i sinðkzDzÞ, and a new pressure wavefield, qðx;uÞ, is intro-
duced and defined as

qðx;uÞ¼pzðx;uÞ=ikz: (4)

It is proved that, using the new pressure wavefield qðx;uÞ,
decomposition of two-way wavefields to their one-way counter-
parts (up-going and down-going wavefields), can be efficiently
completed at each depth depth-extrapolation step, via a simple
summation operation. It is worth pointing out that one-way
propagators, eikzDz and e�ikzDz, expressed in above reformulated
depth-extrapolation scheme, are a simple summation of elements
of two-way propagator-matrix (as defined in Eq. (3)):

8<
:W

_

11 þW
_

12 ¼ eikzDz

W
_

11 �W
_

12 ¼ e�ikzDz
: (5)

The relation between focusing functions (one-way propagators)
and two-way propagator matrix, and its potential seismic appli-
cations are discussed in detail by Wapenaar et al. (2021) and
Wapenaar and de Ridder (2022) recently. Eq. (5) verifies this rela-
tion, with a simpler form.

2.1.3. Boundary conditions and related two-way wave equation
depth-extrapolation

In conventional seismic data acquisition, both the pressure
wavefields and its vertical derivative, pðxR;uÞ and pzðxR;uÞ are
typically acquired or estimated, being known quantities. In this
study, however, only up-going wavefield, puðxR;uÞ, at the
way wave equation based depth extrapolation scheme.
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measurement surface is used as input data (with surface-related-
processing processed), which is equivalent to applying following
boundary conditions: pðxR;uÞ ¼ puðxR;uÞ, and

pzðxR;uÞ¼0: (6)

Inserting above boundary conditions (Eq. (6)) into the two-way
propagator matrix (Eq. (2)), and using Eq. (4) to change pzðx;uÞ to
qðx;uÞ, we can express pðx;uÞ and qðx;uÞ as follows:

8>><
>>:

pðx;uÞ ¼ cosðkzDzÞpuðxR;uÞ ¼
1
2

�
eikzDz þ e�ikzDz

�
puðxR;uÞ

qðx;uÞ ¼ i sinðkzDzÞpuðxR;uÞ ¼
1
2

�
eikzDz � e�ikzDz

�
puðxR;uÞ

:

(7)

Based on Eq. (7), up/down decomposition of depth-extrapolated
wavefields can be realized by summation operations:

�
pdðx;uÞ ¼ pðx;uÞ þ qðx;uÞ ¼ eikzDzpuðxR;uÞ
puðx;uÞ ¼ pðx;uÞ � qðx;uÞ ¼ e�ikzDzpuðxR;uÞ

; (8)

where puðx;uÞ and pdðx;uÞ are respective up-going and down-
going waves, at surface x, after two-way depth-extrapolation and
up/down wavefield separation.

It is worth emphasizing that although only up-going waves are
existed in input data (Eq. (6)), both up-going and down-going
waves are generated and propagated (as described by Eq. (7)), us-
ing two-way wave equation depth-extrapolation scheme. In addi-
tion, with reformulated two-way depth extrapolation scheme (Eq.
(3)), up-going and down-going waves can be separated and ob-
tained efficiently from their two-way counterparts, via a summa-
tion operation at each depth step (as indicated by Eq. (8)). In
remaining text of this paper, above features of two-way depth-
extrapolation scheme and associated up/down wavefield separa-
tion scheme are further explored and used for developing a new
method of internal-multiple-elimination, and related multiple-
eliminated-migration.
2.2. Internal-multiple-elimination using two-way depth-
extrapolation scheme

2.2.1. Internal multiple generators
For horizontally layered media, internal-multiples are sorts of

multiple reflections generated by “two-interfaces” and combina-
tions of such “two-interfaces”, as schematically shown in Fig. 2. In
this paper, we call each interface of such “two-interfaces” as
“multiple-generator” or simply “generator”. With this definition of
multiple-generator, multiples caused by any two subsurface gen-
erators, are called internal-multiples; space coordinates of any nþ1
generators can be defined as xj (j¼ 0,1, 2,…, n), with corresponding
depths:

zj ¼ ljdz� zR; (9)

where lj (j ¼ 0, 1, 2, …, n) are arbitrary numbers (from small to
(
p
�
xj;u

	 ¼ e�ikzzj ½puðxR;uÞ þ IMðxR;uÞ � þ eþikzzj ½puðxR;uÞ þ IMðxR;uÞ �
q
�
xj;u

	 ¼ e�ikzzj ½puðxR;uÞ þ IMðxR;uÞ � � eþikzzj ½puðxR;uÞ þ IMðxR;uÞ �
(13)
large), smaller than N (the largest depth steps in extrapolation); dz
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denotes depth-step interval; and zR is vertical coordinate of xR
(same as defined in Eq. (2)). With above definition of generators, for
any j-th generator (j > 0), we have j generator-pairs consisting of
the j-th generator and corresponding shallower generators: ðx0;xjÞ;
ðx1; xjÞ; …; and ðxj�1; xjÞ. Under this assumption of multiple-
generator, in following, we describe how the proposed method
can realize adaptive internal-multiple-elimination in two-way
depth-extrapolation scheme, and what are main features of our
proposed method.
2.2.2. Adaptive internal-multiple-elimination without need of
source wavelet and iterative prediction

Input receiver data recorded at the measurement surface xR,
puðxR;uÞ, can be expressed as follows:

puðxR;uÞ ¼ p0ðxR;uÞ þ IMðxR;uÞ; (10)

where p0ðxR;uÞ and IMðxR;uÞ are primary waves and multiples,
respectively. If there are nþ1 subsurface multiple generators (as
defined in Eq. (9)), p0ðxR;uÞ and IMðxR;uÞ can be expressed as

p0ðxR;uÞ¼ p10ðxR;uÞþp20ðxR;uÞþ/þpn0ðxR;uÞ¼
Xn
j¼1

pj0ðxR;uÞ

(11)

IMðxR;uÞ ¼ IM1ðxR;uÞ þ IM2ðxR;uÞ þ/þ IMnðxR;uÞ

¼
Xn
j¼1

IMjðxR;uÞ: (12)

where pj0 is the primary waves reflected from the j-th interface.
IMjðxR;uÞ denotes internal-multiples which are produced by the j-
th multiple-generator and corresponding shallower generators.
With this notation, for generator (j ¼ 0), the shallowest generator,
located at depth z0, no generators shallower than it are existed, so
no internal-multiples are generated from shallower layers; for
generator (j ¼ 1), located at depth z1, internal-multiples are
generated by generator-pair located at depth z0 and z1; while for
generator (j ¼ 2), located at depth z2, internal multiples are
generated by two generator-pairs: one located at depth z0 and z2,
and the other at depth z1 and z2. With the same argument, for
generator (j ¼ n), the deepest generator, located at depth zn, related
internal multiples are generated by n generator-pairs, located at
depth zj (j ¼ 0, 1, 2, …, n�1) and zn, respectively. As we can see, in
this way, internal multiples, for any generator (j > 0), are generated
from j generator-pairs, which consist of the j-th generator and all
other shallower generators. In following, we prove that, when
depth extrapolated to the j-th generator, internal-multiples
generated by such j generator-pairs are all directly and adaptively
eliminated beneath the j-th generator.

As the two-way wave equation based wavefield depth extrap-
olation performed, we have
During each extrapolated depth, the primary and internal



Fig. 2. Illustration of ray-path of internal multiples, and subsurface multiple-generators. Red circle denotes source, and blue triangle denotes receiver. Horizontal dash lines denote
depth-steps of extrapolation; while horizontal solid lines represent multiple-generators. (a) Internal multiples are generated by generators at zj-1and zj; (b) internal multiples are
generated by generators at zj-2 and zj. Internal multiples generated by the j-th generator and corresponding shallower generators are, recorded at the measurement surface at zR,
denoted by IMj in text. The vertical dash lines present numerous interfaces which can be used to generate internal multiples.
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multiples separate into its up-going and down-going component,
respectively. Thus, we have8<
: p

�
xj;u

	 ¼ puu
�
xj;u

	þ pdu
�
xj;u

	þ IMu�xj;u	þ IMd�xj;u	
q
�
xj;u

	 ¼ puu
�
xj;u

	� pdu
�
xj;u

	þ IMu�xj;u	� IMd�xj;u	
(14)

where puuðxj;uÞ ¼ e�ikzzj puðxR;uÞ, pduðxj;uÞ ¼ eþikzzj puðxR;uÞ,

IMu�xj;u	 ¼ e�ikzzj IMðxR;uÞ; IMd�xj;u	 ¼ eþikzzj IMðxR;uÞ:
It can be proved that internal multiples (generated by generator

at xj and corresponding shallower generator at x0), IMu�xj;u	, are
cancelled, beneath generator xj, by up-going wave component of
transmitted down-going wavefield, pduðxj;uÞ (referring to Appendix
A for details).

Therefore, we obtain8<
: p

�
xj;u

	 ¼ puu
�
xj;u

	þ IMd�xj;u	
q
�
xj;u

	 ¼ puu
�
xj;u

	� IMd�xj;u	 (15)

Applying the up/down wavefield separation via the addition
operation of Eq. (15), it can be rewritten as follows:

p0
�
xj;u

	¼puu
�
xj;u

	
(16)
2.2.3. Main feature of internal-multiple-elimination method
It is noted that, different from most of other internal multiple

elimination schemes, our proposed method completes internal
multiple elimination, not at the measurement surface but at some
depth steps of two-way wave equation depth-extrapolation.
Because of this, the challenging internal-multiple-elimination
task, in our method, is separated to and adaptively completed at
several different depth steps where internal multiple generators
exist; and at those depth steps, only internal multiples, which are
generated by the generator at current extrapolation depth and
corresponding shallower generators, are eliminated. With this
“task-distributed” implementation mechanism, internal-multiple-
182
elimination processing in our proposed method becomes much
simpler, comparing with most of sophisticated iterative-prediction
based internal-multiple-elimination algorithms.

As described above, the primary feature of our proposed
approach is efficiently, and just performing conventional two-way
wave equation depth-extrapolation (according to Eqs. (1) and
(2)), with suitable boundary conditions (as defined in Eq. (6)) and
associated up/down wavefield separation (using Eqs. (4) and (7)),
we can obtain needed up-going wavefields (primary waves) at each
depth-extrapolation step (using Eq. (16)). For depth steps, where no
multiple-generator is existed, the up-going wavefield obtained is
same as that obtained from conventional two-way depth-extrap-
olation, without multiple-elimination processing; while for depth
steps, where multiple-generators are existed, the up-going wave-
field obtained is free of multiple interferences, with internal-
multiples adaptively eliminated beneath corresponding multiple
generators (as described by Eq. (15)). Because of this feature, the
proposed method is very efficient for IME, without need of source
wavelet and iterative prediction; and highly cost-effective for
IMEM, being able to complete IME and IMEM two processing in
same two-way depth-extrapolation scheme (as described in next
subsection).

2.3. Internal-multiple-eliminated-migration

It is well known that internal multiples recorded at shallow
depths normally produce imaging artifacts at deeper depths. Since
all internal-multiples generated by multiple-generators, consisting
of the current generator and corresponding shallower generators,
have been eliminated during two-way depth-extrapolation. In
performing the source wavefield depth extrapolation using Eq. (1)
or Eq. (3) with Eq. (7) as the boundary condition, we generally have
psðx;uÞ and qsðx;uÞ. By using efficient wavefield separation (with
Eq. (8)), we only need to keep the down-going part of the source
wavefield at each extrapolated depth. Since only the down-going
component remains, we avoid the mutual coupling effect be-
tween up- and down-going waves in the source wavefields.
Consequently, IME cannot generate internal multiples in the source
wavefield. When performing the two-way wave equation-based
depth extrapolation for source and receiver wavefields, the source
wavefields include both up-going and down-going components,
while the receiver wavefields contain the corresponding up-going
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and down-going components. Using the conventional cross-
correlation imaging condition typically generates low-frequency
noise. However, by employing efficient wavefield separation (as
described in Eq. (8)), the final imaging results are derived from the
cross-correlation of the source down-going wavefields and the
receiver up-going wavefields, effectively eliminating the low-
frequency noise. Therefore, our proposed method can realize
IMEM just by applying a conventional imaging condition at each
depth. We can cross-correlate depth-extrapolated up-going wave-
field (via backward extrapolation of the receiver wavefield) with
down-going wavefield (via forward extrapolation of the source
wavefield) as follows:

IIMEðxÞ¼
X
u

sdðx;uÞp0uðx;uÞ (17)

where IIMEðxÞ denotes the imaging result with internal-multiples
eliminated; sdðx;uÞ represents down-going wavefield of source,
and p0uðx;uÞ represents up-going wavefield of receiver, free of
internal-multiples. Using Eq. (17), IMEM is achieved.
2.4. Algorithm of proposed internal-multiple-elimination (IME) and
internal-multiple-eliminated-migration (IMEM)

Based on above derivation and description, the algorithm of
proposed IME and IMEM involves following key elements and
steps:

1. Input data is similar to that of conventional migration: source
signature (needed for migration only but not for IME), macro
velocity model, and receiver data (with SRME processed);

2. Depth-extrapolating receiver data, with two-waywave equation
depth-extrapolation scheme (Eqs. (1) and (2)) and up-going-
wavefield-only boundary conditions using Eq. (6);

3. Adaptively completing internal-multiples-elimination at each
depth-extrapolation step, based on Eqs. (4), (8) and (16);

4. Performing internal-multiple-eliminated-migration at each
depth-extrapolation step, using conventional cross-correlation
imaging condition, with Eq. (17);

5. Depth-extrapolating from depth z ¼ 0 to the maximum depth
zmax ¼ n � dz, yielding imaging results free of internal-multiple
artifacts, for all depth steps.

As we can see that the algorithm of our proposedmethod and its
computational cost, for completing internal-multiple-elimination
and such related migration, is same as that of conventional two-
way wave equation depth-extrapolation based migration.
Although the proposed method is proved to be accurate for hori-
zontally homogeneous layered media, numerical examples in next
segment illustrate that the method is also suitable and valid for
horizontally layered media with moderately lateral variations.
3. Numerical examples

In this segment, we use several synthesized data models and a
real field data to assess the validity and effectiveness of our pro-
posed approach for internal-multiple-elimination, and internal-
multiple-eliminated-migration. To create shot gathers containing
internal multiples, we employ the finite difference technique to
solve acoustic wave equation. In seismic modeling, we incorporate
absorbing layers in velocity models, to be consistent with the
assumption that surface-related multiples have been effectively
attenuated from input data.
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3.1. One dimensional model for illustration

Efficient up/down decomposition of wavefields is intensively
used, at each depth-extrapolation step, in the proposed method. To
demonstrate simplicity and efficiency of this operation in our
method, we create and use a horizontally layered model for illus-
tration. The model features a background velocity of 1500 m/s, and
includes two interfaces (with velocity 3000 m/s) positioned at
depths of z ¼ 250 m and 750 m, respectively. We use a Ricker
wavelet, with a dominant frequency of 20 Hz, as a boundary con-
dition for pressure, and the pressure derivative wavefield, vp/vz,
being zero for another boundary condition.

The depth-extrapolated pressure wavefields (pðx;uÞ, pzðx;uÞ
and qðx;uÞ), using two-way depth-extrapolation scheme (Eqs. (1),
(2) and (6)), are calculated and depicted in Fig. 3(a)e(c), respec-
tively. These two-way wavefields are separated to their one-way
counterparts: up-going and down-going wavefields (puðx;uÞ and
pdðx;uÞ) at each depth-extrapolation step, via a simple summation
operation (Eq. (8)), as shown in Fig. 3(d), (e). With the same
method, wavefield decomposition of puðx;uÞ can be performed,
leading to its separated up-going and down-going components:
puuðx;uÞ and pduðx;uÞ, as shown in Fig. 3(f), (g), respectively. From
Fig. 3, it is seen that one-way propagators can be accurately and
efficiently calculated through two-waywave equation based depth-
extrapolation scheme and associated efficient up/down wavefield
separation (You and Cao, 2020; You et al., 2022), which is a key
feature and superiority of our proposed approach.

To assess the validity and efficiency of the proposed method in
successfully eliminating internal multiples, we carry out a seismic
wavefield simulation utilizing one-dimensional acoustic wave
equation. An absorbing layer is situated atop the model to mitigate
influences of surface-related-multiple waves. Fig. 4(a) displays
recorded seismic signals, with direct wave muted. In our velocity
model, the background velocity is 1500 m/s, while three interfaces
(with velocity of 3000 m/s) are located at z ¼ 250 m, 400 m, and
750 m, respectively. Reflection waves are recorded at z ¼ 0; and
simulated wavefield propagation (in time-space domain), using a
Ricker wavelet with dominant frequency of 20 Hz, are shown in
Fig. 4(b). In Fig. 4(b), we can distinguish three primary waves
(denoted by P1, P2, and P3) reflected from three interfaces
respectively, and four internal multiples (denoted by IM1, IM2, IM3,
and IM4), generated by wavefield interactions of three interfaces. It
can be seen also that IM1 is generated by the first two interfaces
(generators), while IM2, IM3, and IM4 are generated by generators
consisting of the third interface and other two shallower interfaces.

To illustrate internal-multiple-elimination mechanism of pro-
posed method, we calculate five different depth-extrapolated
wavefields by using five different input data: P2þIM1,
P2þIM1þP3, P2þIM1þP3þIM2, P2þIM1þP3þIM2þIM3 and
P2þIM1þP3þIM2þIM3þIM4. The five depth-extrapolated wave-
fields are displayed in Fig. 5(a)e(e), respectively. According to test
results in Fig. 5(a)e(e), we can observe that internal multiple IM1 is
eliminated beneath the second interface by using input data
P2þIM1 or P2þIM1þP3, as shown in Fig. 5(a), (b), while internal
multiples involving IM2, IM3 and IM4 are eliminated beneath the
third interface by using input data P2þIM1þP3þIM2,
P2þIM1þP3þIM2þIM3 and P2þIM1þP3þIM2þIM3þIM4, respec-
tively, as shown in Fig. 5(c)e(e). Internal multiple elimination areas
are marked by the dashed black circles in Fig. 5(a)e(e). The test
results of Fig. 5(a)e(e), verify one of main features of the proposed
method: that is, when data is depth-extrapolated to any depth
where related interface is a multiple generator, internal multi-
plesdgenerated by the generator and corresponding shallower
generatorsdare adaptively eliminated beneath the generator (and



Fig. 3. Depth-extrapolated wavefields at x: (a) pressure wavefield pðx;uÞ; (b) pressure derivative wavefield pzðx;uÞ; (c) pressure wavefield qðx;uÞ; (d) up-going wavefield puðx;uÞ;
(e) down-going wavefield pdðx;uÞ; (f) up-going component puuðx;uÞ; (g) down-going component pduðx;uÞ. Wavefields presented in Fig. 3(a), (b) are obtained using Eq. (1), while
wavefields in Fig. 3(c) are obtained using Eq. (4). It is noted that the up-going wavefields in Fig. 3(a), (c) have opposite phases, whereas the down-going wavefields share the same
phases. Wavefields presented in Fig. 3(d), (e) are obtained using efficient wavefield separation (with Eq. (8)), but each still contains both up- and down-going components.
Wavefields presented in Fig. 3(f), (g) are further refined using efficient wavefield separation (with Eq. (8)), producing separate up- and down-going components.

Fig. 4. (a) Recorded reflection waves at the surface, and (b) the diagram of wavefield
propagation in time-space domain. Black lines in (b) represent the interfaces. Note that
the direct wave is muted in Fig. 4(a). P1, P2 and P3 denote the primary reflected waves
from the three interfaces, respectively. IM1 is generated by the first two interfaces
(generators); IM2, IM3, and IM4, on the other hand, are generated by the third
interface in combination with the two shallower interfaces, respectively.
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related depth). In this example, IM1 is eliminated beneath the
second interface (depth of 400 m), while IM2, IM3, and IM4 are all
adaptively eliminated beneath the third interface (depth of 700 m).
It is worth noting, however, that above tests are for illustration
purpose only; in processing practice, all recorded reflections
(P2þP3þIM1þIM2þIM3þIM4) are used as input data, therefore,
actual depth-extrapolated wavefield utilizing our proposed
approach is same as that of Fig. 5(e). As a comparison, the depth-
extrapolated up-going wavefield using conventional depth
extrapolation strategy (You and Cao, 2020; You et al., 2022), is
shown in Fig. 5(f), which does not eliminate the internal multiples.

To verify the effectiveness of our proposed method in elimi-
nating the influence of internal multiples on imaging, we compare
imaging results, with and without internal multiple impacts, as
depicted in Fig. 6. Evidently, crosstalk artifacts are observed in
imaging using conventional depth-extrapolation scheme without
internal multiple elimination, as indicated by black arrows in
Fig. 6(a). Conversely, imaging using our proposed method exhibits
good performance in removing the impact of all four sets of internal
multiples, as displayed in Fig. 6(b). This demonstrates effectiveness
of our proposed method in adaptive elimination of internal
multiples.



Fig. 5. Depth-extrapolated wavefields by using the proposed depth extrapolation scheme, with different input data: (a) P2þIM1, (b) P2þIM1þP3, (c) P2þIM1þP3þIM2, (d)
P2þIM1þP3þIM2þIM3, (e) P2þIM1þP3þIM2þIM3þIM4; and (f) depth-extrapolated up-going wavefield by using the conventional depth extrapolation scheme.

Fig. 6. Imaging results: (a) without internal-multiple-elimination using conventional depth-extrapolation scheme (imaging artifacts pointed by black arrows are produced by
internal multiples); (b) with internal-multiple-elimination using our proposed method.

Fig. 7. Horizontal layered velocity model.
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3.2. Horizontal layered model

In order to further verify performance of the proposed method,
we establish a nine-layer horizontal layered model, as displayed in
Fig. 7. Dimensions of the model are 1500 m � 2000 m, with grid
spacings of 2.5 m in both horizontal and vertical directions. Seismic
185
data acquisition employs a fixed spread, with receivers and a source
both positioned at depth ¼ 0. The simulation includes a grand total
of 100 shot gathers, with 200 receivers in each gather; the intervals
between sources and receivers are 20 m and 10 m, respectively. A
Ricker wavelet serves as the source function, featuring a dominant
frequency of 30 Hz and a time-sampling interval of 0.0005 s. To
identify the internal multiples, the conventional one-way phase-
shift-plus-interpretation (PSPI) propagator is employed to generate
the reflection waves without internal multiples. For a fair com-
parison, the shot gathers generated using the one-way PSPI prop-
agator and the conventional finite difference method are shown in
Fig. 8. In the shot gather produced by the conventional finite dif-
ference method, the internal multiples are indicated by black ar-
rows, as shown in Fig. 8(b).

For imaging comparison, we perform depth extrapolation and
migration using two-dimensional shot gather data. To assess the
performance of the proposed method in internal-multiple-
elimination and internal-multiple-eliminated-migration, we
compare it with conventional phase-shift depth migration. The
outcomes of themigration are displayed in Fig. 9. As we can see that
obvious imaging artifacts are existed in conventional depth
migration result, as displayed in Fig. 9(a), and indicated by black



Fig. 8. Shot gather produced by using (a) one-way phase-shift-plus-interpretation (PSPI) propagator and (b) conventional finite-difference method. shot gather containing internal
multiples which are pointed by black arrows.

Fig. 9. Imaging results by using different methods: (a) conventional depth migration method without internal multiples elimination; (b) our proposed method with adaptive
internal multiples elimination. The black arrows indicate the imaging artifact produced by internal multiples.

Fig. 10. Velocity function of multi-layer model.
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arrows; the artifacts are caused by severe internal multiples,
generated from many “two-interface” generators in this model. In
contrast, our proposed method successfully eliminates internal
multiples and achieves much clearer imaging, as shown in Fig. 9(b).
3.3. Multi-layer model with a curved layer

Fig. 10 shows a complex structural model that is frequently used
in internal-multiple-elimination related tests (e.g., Lomas and
Curtis, 2019; Ravasi and Vasconcelos, 2021). The size of model is
4000 m � 7500 m, with grid spacing of 10.0 m in both horizontal
and vertical directions. In total, there are 188 shot gathers, and each
shot gather has 375 receivers. Sources and receivers are uniformly
spread across the model's top surface, with intervals of 40.0 m and
186
20.0 m, respectively. The source function employs a Ricker wavelet
with a dominant frequency of 20 Hz. The maximum recording
period spans around 6.0 s, with a sampling interval of 0.001 s. To
indicate the internal multiples produced by interfaces, the shot
gather using the one-way PSPI propagator is generated, for com-
parison with the shot gather of the conventional finite difference
method, as shown in Fig. 11.

A test is conducted on this model to further evaluate the avail-
ability of our suggested method in eliminating internal multiples.
For this evaluation, we compare conventional PSPI method (Gazdag
and Sguazzero, 1984), which does not include internal multiple
elimination, with our proposed method, by migrating all shot
gathers. The migration results using these two methods are pre-
sented in Fig. 12(a), (b), respectively. Owing to the existence of in-
ternal multiples, the conventional PSPI method exhibits artifacts in
imaging, as denoted by black arrows in Fig. 12(a). Obviously, these
imaging artifacts can potentially lead to incorrect seismic inter-
pretation. In contrast, our proposed method accurately eliminates
internal multiples, resulting in a significantly improved imaging, as
displayed in Fig. 12(b).
3.4. SEG/EAGE salt model

In this numerical example, we test and evaluate our method on
a complex SEG/EAGE salt model, which is displayed in Fig. 13. The
salt model has dimensions of 2200m� 6000m, with a grid spacing
of 10.0 m in both horizontal and vertical directions. In our seismic
acquisition scheme, we position 600 receivers along the surface at
intervals of 10.0 m, and 150 sources along the surface at intervals of
40.0 m. The maximum recording time extends to about 4.0 s, with a



Fig. 11. Shot gather produced by using (a) one-way PSPI propagator and (b) conventional finite-difference method. shot gather containing internal multiples which are pointed by
black arrows.

Fig. 12. Imaging results by using different methods: (a) conventional PSPI method without internal multiples elimination; (b) our proposed method with adaptive internal
multiples elimination. The black arrows indicate imaging artifacts produced by internal multiples.

Fig. 13. Salt velocity model.

Fig. 14. Imaging results obtained by using different methods: (a

J.-C. You, G.-L. Zhang, X.-G. Huang et al. Petroleum Science 22 (2025) 178e192

187
sampling interval of 0.001 s.
Because of presence of a salt body, and a significant velocity

difference (in the middle part of section), internal multiples asso-
ciated with the salt dome are generated, and present a significant
challenge to imaging quality. To address this challenge, and eval-
uate our proposed method, we employ and test both conventional
RTM and our proposed IMEM methods for imaging the salt model.
Fig. 14(a), (b) respectively depict the imaging results obtained from
the two methods. Fig. 14(a) reveals imaging artifacts beneath the
salt dome, as indicated by black arrows, which diminish the im-
aging quality of conventional RTM method. In contrast, Fig. 14(b)
presents a much clearer imaging result beneath the salt dome by
effectively eliminating internal multiples during depth extrapola-
tion. This numerical result verifies the accuracy and efficiency of
) conventional RTM method and (b) our proposed method.
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the proposed approach in attenuating internal multiples, and
achieving high-quality imaging (free of internal multiple in-
terferences), even within subsurface media exhibiting pronounced
lateral velocity variations. It is worthwhile to emphasize that the
proposed approach is highly efficient because internal-multiple-
elimination and internal-multiple-eliminated-migration are natu-
rally integrated into the same two-way wave equation depth-
extrapolation scheme, without special requirements for positions
of sources and receivers being co-located, and additional compu-
tational cost (comparing with conventional two-way depth-
extrapolation based migration).
3.5. Real data application

To evaluate the performance of our proposed method with real
data, we collected real shot gathers from a carbonate reservoir
zone. Within these geological strata, certain formations bearing
carbonate have relatively high velocity values, which are integrated
into the geological structure. These carbonate-bearing formations
enhance the generation of internal multiples during seismic wave
propagation. The inverted velocity model and a shot gather are
depicted in Fig. 15, where the shot gather suffers from severe
background noise, substantially degrading the signal-to-noise ratio
of the seismic data. This combination of internal multiples and
background noise presents a significant challenge in achieving a
clear imaging section. However, by employing both conventional
one-way PSPI migration and our method to process the shot
gathers, we observed distinct imaging results, as illustrated in
Fig. 16. For a clear comparison, the partial enlarged sections of their
results are shown in Fig. 17. The imaging result of the conventional
one-way PSPI migration method is heavily affected by internal
multiples, with imaging crosstalk from these multiples obscuring
true imaging events and complicating the identification and
interpretation of such events. Conversely, our method, through the
application of IME, allows for the clear observation and identifica-
tion of some imaging events in its imaging section, highlighted by
the dashed black circle in Fig. 17, demonstrating a marked
improvement in imaging quality over the conventional method.
This case underlines the capability of our method to suppress in-
ternal multiples and enhance imaging quality effectively.
Fig. 15. (a) Velocity mod
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4. Discussion

4.1. Velocity sensitivity analysis

As depicted in the theory section, the elimination of internal
multiples using a two-way wave equation wavefield depth
extrapolation scheme depends on the reflection coefficients of
structures, enabling adaptive internal multiple elimination (IME).
This necessitates evaluating the IME performance of our proposed
method with smoothed velocity models, such as those using
inaccurate velocity data. In our cases, the 3 � 3 and 7 � 7 Gaussian
windows are applied to the SEG/EAGE Salt model for smoothing the
original velocity model, as illustrated in Fig. 18. A larger filtering
window blurs the structures more, making finer interfaces and the
boundary of the salt dome become less discernible, as shown in
Fig. 18. We use conventional RTM and our proposed methods to
evaluate imaging performance with these smoothed velocity
models, as shown in Figs. 19 and 20. The use of inaccurately
modeled velocities affects IME performance, generating some im-
aging crosstalks beneath the Salt dome, as pointed out the results
seen in Fig. 14. However, our proposed IME method outperforms
conventional RTM methods by partially eliminating internal mul-
tiples and reducing imaging artifacts of internal multiples, as
indicated by the dashed yellow circles in Figs. 19 and 20. For a
quantitative assessment, we extracted imaging amplitudes at
x ¼ 3000 m from migration sections derived from the original and
the smoothed velocity models (3 � 3 and 7� 7 Gaussian windows),
as plotted in Fig. 21. The comparison of imaging amplitudes of in-
ternal multiples beneath the salt dome, magnified in Fig. 21, reveals
that enhancing the smoothness of the velocity model results in a
gradual rise in the false imaging amplitude of internal multiples.
Yet, our method substantially diminishes the effect of internal
multiples. Our method demonstrates significant success in sup-
pressing internal multiples within accurate velocity structures and
achieves partial suppression with smoothed velocity models.
Eliminating internal multiples in complex media structures re-
mains a challenge, further research will focus on suppressing in-
ternal multiples between structures in either smoothed velocity
models or complex conditions, paving a new path for internal
multiple elimination by using two-way wave equation based
wavefield depth extrapolation.
el; (b) shot gather.



Fig. 16. Imaging result by using (a) the conventional one-way PSPI migration method; (b) our proposed method.

Fig. 17. Partial enlarged imaging result by using (a) the conventional one-way PSPI migration method; (b) our proposed method.

Fig. 18. Smoothed original velocity model by using gaussian filter with (a) 3 � 3 window; (b) 7 � 7 window.

Fig. 19. Imaging results obtained using the smoothed velocity with 3 � 3 Gaussian windows: (a) RTM; (b) our proposed method.
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4.2. Computational time analysis

To compare the computational efficiency of the proposed
method in handling internal multiples and wavefield extrapolation,
we provide statistics on the computation time for the two-way
189
wave equation-based depth extrapolation scheme with and
without IME in the numerical model to migrate one shot gather, as
listed in Table 1. From the computation time of the numerical ex-
amples, it is evident that the internal multiple elimination does not
add extra computational load to the two-way wave equation-based



Fig. 20. Imaging results obtained using the smoothed velocity with 7 � 7 Gaussian windows: (a) RTM; (b) our proposed method.

Fig. 21. Imaging amplitude extracted at x ¼ 3000 m from migration sections of our proposed method using different velocity models: red line presents the original velocity model,
while black and green lines denote the smoothed velocity with 3 � 3 and 7� 7 gaussian filtering windows, respectively.

Table 1
Comparison of computational times (unit: s) between two-way wave-equation-based depth extrapolation (TWDE) scheme with and without IME.

Model Horizontal layered model Multi-layer model with a curved layer SEG/EAGE Salt model

Computational times of TWDE with IME, s 61 45 304
Computational times of TWE without IME, s 59 40 214
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depth extrapolation. This is because the method developed in this
paper naturally integrates the internal multiple elimination into
the two-way wave equation-based depth extrapolation scheme.

5. Conclusions

To address the internal-multiple-elimination and internal-
multiple-eliminated-migration challenges, in this study, we
develop an adaptive internal-multiple-elimination scheme using
two-way wave equation based wavefield depth-extrapolation.
With two-way wave equation depth-extrapolation framework,
suitable boundary conditions, and associated up/down wavefield
separation mechanism, our proposed method enables up-going
wavefields (input data) propagated, both backward and forward
(in time) simultaneously, and internal-multiple-elimination
completed adaptively and efficiently, at each depth-extrapolation
step without need of source wavelet and iterative prediction
computations. The input data for the proposed method is exactly
same as that for conventional migration, without special re-
quirements for source/receiver sampling and location. Moreover,
our proposed method seamlessly integrates internal-multiple-
elimination into two-way depth-extrapolation scheme and
related migration, making the proposed internal-multiple-
eliminated-migration highly efficient without requiring additional
computational cost, compared with conventional two-way depth-
extrapolation based migration. Numerical examples and the real
data application, including tests on one-dimensional model, hori-
zontal layered model, multi-layer model with a curved layer, and
SEG/EAGE Salt model, verify and demonstrate that our proposed
scheme can adaptively eliminate internal multiples during two-
190
way depth extrapolation, effectively and efficiently, and mean-
while achieve high-quality imaging results without (or with much
less) internal-multiple artifacts.
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Appendix A

Proof and physical insight of Eq. (15)

To prove that our proposed method is able to eliminate internal
multiples beneath multiple generators, as described by Eq. (15), we
use one-dimensional “two interfaces” model for illustration. This
model is schematically shown in Fig. A-1(a). For simplicity but
without loss of generality, a pulse function, which is denoted as dðtÞ,
is employed as a source, while two interfaces, positioned at depths
z0 and z1, are used as an internal-multiple generator; the earth
medium between the two interfaces is characterized by constant
density and background velocity c. Since the thickness of two in-
terfaces is Dz ¼ z1 � z0, the corresponding one-way traveling time
is t ¼ Dz=c. For a down-going wave incident on interfaces from top,
local reflection coefficients at depth level zj (j ¼ 0, 1), are defined as
rj; while for an up-going wave incident on interfaces from below,
they are defined as �rj. For notation simplicity (without loss of
accuracy), transmission coefficients at the interfaces are omitted.
With these definitions in place, two primary waves P1 and P2, and
one internal multiple wave IM are shown in Fig. A-1(a) (modified
from Slob et al., 2014).

Fig. A-1. (a) Forward modeled reflection responses of two interfaces, with depth at z0
and z1 respectively; (b) reflection responses after depth-extrapolation from z0 to z1;
rays (in green) are related to primary P2, while rays (in red) related to internal multiple
IM; dashed lines for P2duðz1;uÞ and IMuuðz1 ;uÞ indicate that internal multiple is
cancelled and eliminated beneath the second interface. Note that all transmission
notations are omitted in this figure.

When primary wave (P2) and internal multiples (IM) are depth-
extrapolated jointly from depth z0 to z1, using two-way depth-
extrapolation scheme (with boundary conditions defined by Eq.
(6)), resulted wavefields are shown in Fig. A-1(b). Notably, when
primary wave P2 is depth-extrapolated from depth z0 to z1, based
on Eq. (7), it generates not only backward propagated up-going
wave P2u but also forward propagated down-going wave P2d as
follows:

P2uðz1;uÞ¼ e�ikzDzP2ðz0;uÞ; (A-1)

and

P2dðz1;uÞ¼ eikzDzP2ðz0;uÞ: (A-2)

With the same argument, when internal multiples IM is depth-
extrapolated from depth z0 to z1, both up-going and down-going

waves IMuðz1;uÞ and IMdðz1;uÞ are generated:
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IMuðz1;uÞ¼ e�ikzDzIMðz0;uÞ; (A-3)

and

IMdðz1;uÞ¼ eikzDzIMðz0;uÞ: (A-4)

As shown in Fig. A-1(b), arrival times at z1, for wavefields
P2dðz1;uÞ and IMuðz1;uÞ, are same (referring to Eqs. (A-2) and (A-
3)). It is noted also that, when down-going wave P2dðz1;uÞ passes
through interface at z1, it generates two waves: a transmitted
down-going wave P2ddðz1;uÞ, and an up-going wave P2duðz1;uÞ;
and following relation between P2duðz1;uÞ and P2dðz1;uÞ is held:

P2duðz1;uÞ¼ � r1P2
dðz1;uÞ; (A-5)

where�rj is reflection coefficient of interface at z1 (if incident wave
hits interface from below), while transmission coefficient at z1 is
omitted. As seen from Fig. A-1, we also have following relation
equations between P2dðz1;uÞ, IMuðz1;uÞ, and IMuuðz1;uÞ:�
IMuðz1;uÞ ¼ r1P2

dðz1;uÞ
IMuuðz1;uÞ ¼ IMuðz1;uÞ

; (A-6)

where IMuuðz1;uÞ corresponds to transmitted IMuðz1;uÞ (beneath
interface at z1), in second equation of Eq. (A-6); transmission co-
efficient is omitted. Using Eqs. (A-5) and (A-6), we can derive and
obtain following equation:

P2duðz1;uÞþ IMuuðz1;uÞ¼0: (A-7)

Since transmission coefficients are omitted for both P2duðz1;uÞ
and IMuuðz1;uÞ in Eqs. (A-5), (A-6), and (A-7), it does not affect the
derivation and accuracy of Eq. (A-7). From Eq. (A-7) and Fig. A-1(b),
we can see that up-going waves, P2duðz1;uÞ and IMuuðz1;uÞ, have
same arrival times and magnitudes at z1, but opposite polarities
beneath depth z1. Because of this, internal-multiples, IMuuðz1;uÞ, is
cancelled and eliminated by up-going wave, P2duðz1;uÞ, generated
beneath the multiple-generator interface, during two-way depth-
extrapolation. With the above derivation and description of Eq. (A-
7), we complete proof of Eq. (15).

It is worth noting that although above proof of Eq. (A-7), for
simplicity reason, is only discussed for and based on two-interfaces
located at depth of z0 and z1, it can be extended to any two-interface
pairs located at depth zj ¼ ljdz� zR (j¼ 0,1, 2,…, n), for horizontally
homogeneous layeredmedia, as developed and described in Theory
section; and, with the same argument, Eq. (A-7) is established for
higher orders of internal multiples too.
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