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a b s t r a c t

Saline aquifers are considered as highly favored reservoirs for CO2 sequestration due to their favorable
properties. Understanding the impact of saline aquifer properties on the migration and distribution of
CO2 plume is crucial. This study focuses on four key parametersdpermeability, porosity, formation
pressure, and temperaturedto characterize the reservoir and analyse the petrophysical and elastic
response of CO2. First, we performed reservoir simulations to simulate CO2 saturation, using multiple sets
of these four parameters to examine their significance on CO2 saturation and the plume migration speed.
Subsequently, the effect of these parameters on the elastic properties is tested using rock physics theory.
We established a relationship of compressional wave velocity (Vp) and quality factor (Qp) with the four
key parameters, and conducted a sensitivity analysis to test their sensitivity to Vp and Qp. Finally, we
utilized visco-acoustic wave equation simulated time-lapse seismic data based on the computed Vp and
Qp models, and analysed the impact of CO2 saturation changes on seismic data. As for the above nu-
merical simulations and analysis, we conducted sensitivity analysis using both homogeneous and het-
erogeneous models. Consistent results are found between homogeneous and heterogeneous models. The
permeability is the most sensitive parameter to the CO2 saturation, while porosity emerges as the pri-
mary factor affecting both Qp and Vp. Both Qp and Vp increase with the porosity, which contradicts the
observations in gas reservoirs. The seismic simulations highlight significant variations in the seismic
response to different parameters. We provided analysis for these observations, which serves as a valuable
reference for comprehensive CO2 integrity analysis, time-lapse monitoring, injection planning and site
selection.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Nomenclature

Sgi The saturation of CO2 in the i grid M0 The compression modulus at an extremely low frequency, GPa
Q�1
pmax

The maximum inverse quality factor of the P-wave M∞ The compression modulus at an extremely high frequency, GPa

f Porosity MS The compression modulus of mineral matrix, GPa
Kf The effective bulk modulus of the fluid in a rock, GPa MDry The compression modulus of rock skeleton, Pa
MG The compressional modulus of CO2-only rock, GPa MW The compressional modulus of wet rock, GPa
Kg The bulk modulus of CO2, GPa KW The bulk modulus of water, GPa
Vp The P-wave velocity, m/s SW The water saturation
v0 The initial P-wave velocity, m/s r The volume density, kg/m3

p The acoustic pressure, GPa g Dimensionless variable
n The number of grids
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1. Introduction

Over the past few decades, geological sequestration had been
widely recognized as a highly effective method for reducing CO2
emissions and stabilizing greenhouse gas concentrations in the
atmosphere. During the CO2 injection phase, buoyancy caused the
gas to move upwards (Dai et al., 2014). The migration of super-
critical CO2 was captured by three main mechanisms: hydrody-
namic capture, solution capture, and mineral capture (Bachu et al.,
1994; Gershenzon et al., 2015; Iglauer et al., 2015; Xu et al., 2004).
Various types of storage sites could be utilized for CO2 storage,
including deep saline aquifers (Bourne et al., 2014; Rutqvist et al.,
2010), depleted gas reservoirs (Orlic, 2016; Raza et al., 2018),
abandoned coal seams (Bachu, 2007), deep-sea locations, and
basalt formations. Among the listed sequestration sites, deep saline
aquifers are considered highly favorable reservoirs. Their advan-
tages include broad distribution, substantial storage capacities up
to tens of billions of tons, relatively high security, and a relatively
mature level of commercial technology (Metz et al., 2005). There-
fore, it is crucial to enhance our understanding of saline aquifer
properties and characteristics to simulate CO2 sequestration accu-
rately and conduct 4D seismic monitoring. 4D seismic monitoring
technology is now widely used in many CO2 enhanced oil recovery
(EOR) projects worldwide. This method plays a crucial role as CO2
storage associated with EOR constitutes the largest volume of
stored CO2 (Barajas-Olalde et al., 2021; Jin et al., 2021; Mur et al.,
2020). Typically, most researchers primarily concentrate on ana-
lysing the sensitivity of geological environmental factors and CO2
injection parameters to the post-CO2 injection formation.

On the one hand, it is important to perform reservoir modeling
and analyse the sensitivity of CO2 saturation to different factors to
characterize the aquifer, and to evaluate the impact of the geolog-
ical environment and aquifer properties on CO2 storage. At present,
many scholars have conducted studies on the sensitivity of saline
aquifers following CO2 injection. Zhu et al. (2015) found that the
range of the simulated plume was significantly influenced by
permeability anisotropy, temperature, and CH4, while showing less
sensitivity to other parameters. Xiao et al. (2018) conducted a
single-factor analysis, revealing that bottom-hole pressure and
fracture permeability significantly impacted production. However,
they did not address CO2 injection parameters in their study. Wiese
et al. (2010) conducted sensitivity analysis on input parameters and
revealed that aquifer permeability and thickness had a dominant
influence. These studies highlight the importance of understanding
the sensitivity of various factors in CO2 sequestration within saline
aquifers.

On the other hand, extensivemonitoring plays an important role
in understanding and verifying the long-term integrity and effec-
tiveness of the saline aquifer for CO2 storage (Lackner, 2003). Time-
lapsed (or 004D00) seismic events offer a reliable method for large-
scale fluid monitoring, particularly in validating trap integrity
throughout the lifecycle of a project (Lumley, 2010). Widely utilized
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for decades in the oil and gas industry, this method detects hy-
drocarbons through time-lapse monitoring and effectively moni-
tors fluid movement in underground reservoirs (Johnston, 2013;
Will et al., 2021). Recently, most carbon capture utilization and
storage (CCUS) initiatives have employed time-lapse methods to
monitor the transport and distribution of CO2 underground. Spe-
cifically, seismic methods are frequently used for short-term or
long-term monitoring of CO2 storage (Arts et al., 2004; Kazemeini
et al., 2010; Tanase and Tanaka, 2021; Zhu et al., 2017). Time-
lapse seismic monitoring is cost-effective, especially for offshore
storage projects, and has demonstrated its effectiveness in moni-
toring subsurface CO2 dynamics (Ajo-Franklin et al., 2013; Lazaratos
and Marion, 1997). For example, this technique has been applied in
various locations including Sleipner in Norway-North Sea (Arts
et al., 2004; Li and Li, 2021), Snøhvit in Norway-Barents Sea
(Eiken et al., 2011), Tomakomai offshore Hokkaido Islands (Tanase
and Tanaka, 2021), In Salah (Mathieson et al., 2010), Weyburn
(Davis et al., 2003; White, 2013), Ketzin onshore Germany
(Kazemeini et al., 2010), and the United States Department of En-
ergy Illinois Basin sequestration pilot (Cou€eslan et al., 2014). These
examples highlight the effectiveness and widespread application of
time-lapse seismic imaging in monitoring CO2 storage in various
locations.

Notably, the injected CO2 into formations has significant effects
on the fluid systems within the reservoir. This injection cause
various changes, including changes in fluid saturation, pore pres-
sure, fluid density, and the sealing capacity of the cap layer.
Consequently, the injection of CO2 modifies the elastic character-
istics of the reservoir. This affects seismic velocity and attenuation,
thereby impacting the propagation of seismic waves (Carcione
et al., 2006; Leong et al., 2022). In return, the discernible changes
in P-wave amplitude or travel time comprehensively reflects CO2
saturation and pore pressure. For example, at Sleipner, time-lapse
seismic monitoring quantitively describes the distribution of CO2
in strata. It analyses alterations in seismic wave velocity and
attenuation before and after gas injection (Chadwick et al., 2019;
Zhu et al., 2017). Therefore, Vp and Qp are two key seismic pa-
rameters that represents the seismic response to the CO2
saturation.

Previously, Shen et al. (2018c) explored natural gas studies and
discovered the significant impact of porosity on P-wave velocity
and attenuation, with Qp and Vp are sensitive to variations in rock
properties. However, the sensitivity of injection parameters during
CO2 sequestration in reservoir simulation to Qp and Vp has not yet
been studied. Additionally, our understanding of how aquifer
properties and its geological environment impact seismic data for
CO2 storage in deep saline aquifers is limited. In this paper, our goal
is to establish a relationship between the aquifer characteristics
and the seismic elastic Vp and Qp. This will help bridge the gap
between reservoir modeling and time-lapse seismic monitoring,
facilitating a comprehensive understanding of CO2 plume migra-
tion. We characterize the aquifer using reservoir parameters such
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as permeability, porosity, formation pressure, and temperature, and
explore their relationship to Vp and Qp. Consequently, we analyse
the seismic responses to reservoir properties and CO2 plume dis-
tribution. This study aims to provide a reliable reference for CO2
integrity analysis, time-lapse monitoring, injection planning, and
site selection.

In our paper, we first perform reservoir simulations to analyse
the sensitivity of the following influencing parameters to CO2
saturation post-injection: permeability, porosity, formation pres-
sure, and temperature. Subsequently, we establish a relationship
between these four key parameters and the seismic properties of Vp

and Qp, using rock physics theory, with a sensitivity analysis.
Finally, we generate the time-lapse seismic data based on the
computed Vp and Qp using the visco-acoustic wave equation.
Through the workflow, we integrate the reservoir modeling and
seismic modeling to investigate how the saline aquifer influences
the seismic properties and seismic response for CO2 storage.
2. Methodology

2.1. Reservoir modeling

When CO2 was injected into subsurface formations, specific
temperature (31.1 �C) and pressure (73.82 bar) conditions are
necessary to maintain a supercritical state (Al-Khdheeawi et al.,
2017; Bachu, 2001; Sohal et al., 2021). As the injected CO2 mi-
grates and dissolves in the saline aquifer, its mobility decreases
over time, resulting in changes in CO2 saturation within the reser-
voir. In our process, to simulate CO2 saturations, we utilized Eclipse
300, a reservoir simulation software developed by Schlumberger.
Our reservoir model assumes that CO2 exists in a supercritical state
and is buried at depths exceeding 800 m. For the simulation, we
assigned gas diffusion coefficients of 0.001 to the CO2 components
and implemented a bottom-hole pressure (BHP) limit of 400 bars.
Additionally, due to the extensive horizontal reach of ourmodel, we
assumed the presence of a non-permeable boundary. In our
simulation, we only monitored the CO2 for a limited amount of time
within 100 years. Therefore, this simulation did not account for
geochemical reaction between CO2 and the mineral, which requires
for a significant time span.

To perform sensitivity analysis, we focused on four key param-
eters: permeability, porosity, formation pressure, and temperature.
In reality, the variation of the permeability has an order of
magnitude larger than the other three parameters. Therefore, to
accurately represent the full range of permeability values, we chose
to work with the logarithm of permeability. We first selected a
reference set based on a field example. Subsequently, we proceeded
to individually perturb each parameter to observe and understand
the impact of their changes on CO2 saturation. To quantify the
change in CO2 saturation, we monitored the target area surround-
ing the injected well and tracked the variations in saturationwithin
it. Specifically, for the purpose of quantifying the variations, we
proposed a formula to compute the average saturation, as follows:

SG¼

Pn
i¼1

SgiðSgi � tÞ

nðSgi�tÞ
; (1)

where SG is the average CO2 saturation for the entire region; Sgi
represents the saturation of CO2 in the i grid; n represents the
number of grids; t is a constant.
2.1.1. Homogeneous model
This study utilizes the geological characteristics of typical saline
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aquifers in the Pearl River Estuary (PRE), China. It integrates with a
real CO2 sequestration project to conduct dynamic simulation of
carbon sequestration. In our reservoir modeling, we generated two
models for simulation and analysis. The first one is a simple model
with flat layers, which served as an ideal case for analysis. The
secondmodel has anticline and faults cutting through, which better
represented a more realistic reservoir.

Our models are sized at 18 km (x)� 4 km (y)� 3 km (z). The grid
spacing for reservoir simulation is 300m (x)� 400m (y)� 10m (z).
The deep saline aquifer has a depth of 1135 m and a thickness of
140 m. The mudstone has a porosity of 5% and a permeability of 0.1
mD, while the sandstone has a porosity of 28.5% and a permeability
of 800 mD. The aquifer initially contains fully saturated saltwater,
exhibiting an initial pressure of 110 bars and a temperature of
52.3 �C. These conditions are suitable for accommodating super-
critical CO2 in the reservoir (Sheng et al., 2023). Both models share
identical injection parameters. The injection strategy begins in the
year 2024, involving continuous CO2 injection for 25 years, fol-
lowed by an additional 75 years of monitoring through shut-in
wells. During the simulation, the annual volume of CO2 injected
is 1 Mt, with a CO2 injection rate of 1394520 sm3/day. Fig. 1(a) and
(b) show the simple model and the complex model with the in-
jection points annotated, respectively. As for the complex model, a
20-m-thick layer of mudstone penetrates the sandstone reservoir.
This enhances the sealing effect and notably diminishing the risk of
leakage.

2.1.2. Heterogeneous model
All grid parameters in the heterogeneous model remain

consistent with those in the homogeneous model throughout the
design process. We used the SGSIM algorithm in the Stanford
Geostatistical Modeling Software (SGeMS) (Mahyapour et al., 2022;
Remy et al., 2009) to generate two three-dimensional random
permeability fields with the same variogram model, as shown in
Fig. 2. A nugget effect of 0.1 and a spherical variogram model, with
weight 0.9, was used. The variogram model was set with correla-
tion lengths to be lx ¼ 10; ly ¼ 10 and lz ¼ 50 (in terms of number
of grid blocks) along the x, y, and z directions. The log-normal
distributed permeability field had a mean of 6.68 (mln k), and
standard deviation of 0.7 (sln k). It is important to note that the
mean log-permeability value of 6.68 corresponded to 800 mD,
which is the same as that in the homogeneous case. Porosity and
initial conditions were also consistent with those parameters in the
homogeneous case.

In this paper, we simulated CO2 reservoirs using both homoge-
neous and heterogeneous models. We utilized the van Genuchten-
Mualem model (Mualem, 1976; van Genuchten, 1980) to derive
relative permeability and capillary pressure curves for CO2 storage,
as shown in Fig. 3.

2.2. Rock physics modeling

When seismic waves propagate through the Earth's layers, the
energy attenuates. In this paper, we only considered the intrinsic
attenuation, which results from energy loss. The quality factor Qp of
the P-wave is used to quantify the intrinsic attenuation. The in-
tensity of intrinsic attenuation is described by the frictional energy
loss per cycle, as follows:

1
Qp

¼ � DE
2pE

(2)

where E is the total energy, DE is the energy loss per cycle, and Qp is
the intrinsic quality factor.

The Kramers-Kronig relation establishes the relationship



Fig. 1. 2D geological model. (a) A simple model with flat layers; (b) a more realistic model with anticline and faults cutting through.

Fig. 2. Comparison of two heterogenous permeability models, (a) the case 1 model and (b) case 2 model.

Fig. 3. (a) Relative permeability curve of gas-water system; (b) capillary curve.
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between Qp and the modulus-frequency dispersion (Kramers,
1940). We used the maximum inverse quality factor of the P-
wave to compute Qp and used the low-frequency compression
modulus M0 and the volume density r to calculate the P-wave
velocity Vp of the rock (Shen et al., 2018c):
196
Q�1
pmax

¼ M∞ �M0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M∞M0

p ; (3)

where M0 represents the compression modulus at an extremely
low frequency, whileM∞ corresponds to the compression modulus
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at an extremely high frequency. At the low frequency, the loading is
slow. This causes the oscillations of the pore pressure within a fully
water-saturated patch and the patch containing bothwater and CO2
to reach equilibrium. To compute the low-frequency modulus, we
used the fluid substitution with Vp-only approximation (Mavko
et al., 1995), as follows:

M0 ¼MS

fMDry � ð1� fÞKfMDry

.
MS þ Kf

ð1� fÞKf þ fMS � KfMDry

.
MS

; (4)

where MS is the compression modulus of mineral matrix and MDry
is the compression modulus of rock skeleton. f is the total porosity.
Kf is the effective bulk modulus of the fluid in a rock, calculated
from the harmonic average of water and CO2.

On the contrary, at high frequencies, we used the patch satu-
ration equation developed by Mavko et al. (2009), because the
water saturated patch and the CO2 patches are not equilibrated. So,
the high-frequency compressional modulus is the harmonic
average of the compressional modulus of wet rock MW and CO2-
only rock MG:

1
M∞

¼ SW
MW

þ 1� SW
MG

; (5)

where

MW ¼MS
fMDry � ð1� fÞKWMDry

�
MS þ KW

ð1� fÞKW þ fMS � KWMDry
�
MS

; (6)

MG ¼MS
fMDry � ð1� fÞKgMDry

�
MS þ Kg

ð1� fÞKg þ fMS � KgMDry
�
MS

; (7)

where KW and Kg are the bulk modulus of water and CO2, respec-
tively, and SW is the water saturation.

To compute the P-wave velocity Vp of the rock, we used the low-
frequency compression modulus M0 and the volume density r, as
shown below:

Vp ¼
ffiffiffiffiffiffiffi
M0

r

s
: (8)
2.3. Seismic modeling

It is well known that seismic wave propagates in media filled
with gas (e.g., CO2) will exhibit amplitude dissipation and phase
dispersion. To accurately describe the wave propagation properties
in attenuating media, a series of attenuation theories have been
developed over the years (Carcione et al., 1988). One of widely used
theory is the constant Q (CQ) attenuation theory (Carcione et al.,
2002; Shen et al., 2018a, 2018b), proposed by (Kjartansson, 1979).
Building on the CQ theory, many viscoacoustic wave equations have
been derived to simulate the characteristics of seismic wave
propagation. In this study, we employed the fractional Laplacian
viscoacoustic wave equation proposed by Zhu and Harris (2014) to
perform forward modeling, which can be expressed as

1
c2

v2p
vt2

¼ h
�
�V2

�gþ1
pþ t

v

vt

�
�V2

�gþ1=2
p; (9)

where c ¼ v0 cosðpg =2Þ, v0 is the P-wave velocity, g ¼
arctanð1 =QpÞ=p is a dimensionless variable, Qp is the quality factor
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that characterizes the strength of attenuation. The coefficients h

and t are h ¼ � v
2g
0 u�2g

0 cosðpgÞ;t ¼ � v
2g�1
0 u�2g

0 sinðpgÞ.
In Eq. (9), when Qp/∞, Eq. (9) becomes the acoustic wave

equation.

2.4. Work flow

Fig. 4 shows the steps of the research: First, we input the
geological model into the reservoir simulator to compute the post-
injection CO2 saturation. Then we computed Qp in Eq. (3) and Vp in
Eq. (8). Based on these elastic models, we were able to generate the
time-lapse seismic datasets using Eq. (9). To perform the analysis of
the seismic response to CO2 saturation, we performed reverse-time
migration to image the subsurface which better display the distri-
bution of the CO2 plume.

3. Results and discussion

3.1. Reservoir simulation results

3.1.1. Homogeneous model
Fig. 5(a) and (b) illustrate the distribution of the migration of

supercritical CO2 following injection into a single-well, along with
the plume simulation. It shows the variation in CO2 saturation over
25-years period of injection and monitoring for 100 years. It is
evident that with the continuous injection of CO2, the CO2 plume
eventually accumulated at the top, forming a “funnel-shaped”
structure, and regions with higher concentration gradually moved
upward over time. Despite the expansion of the plume, it is clear
that the concentration decreased, attributed to the CO2 dissolving
into the reservoir water over time.

From Fig. 5(a) and (b), it is observed that near the injectionwell,
as CO2 continues to be injected, the formationwater in the reservoir
is continuously displaced. After 25 years, the free CO2 exhibits a
horizontal migration distance of 4200 m, with an average annual
speed of 168 m. After 100 years, the plume covers a maximum
horizontal migration distance to 5100 m, with an average annual
speed of 51 m. While the increase in horizontal migration distance
was not substantial, the plume suggests a larger and farther range
of overall migration. Considering only the average annual speed, it
is evident that during the injection period, the CO2 migration speed
was relatively rapid. However, after the injection stopped, the CO2
in the reservoir gradually diminished. At the same time, it becomes
evident that with the change of time, CO2 saturation gradually
migrated to the cap layer without any signs of leakage. This shows
the cap layer's effective sealing properties. In Fig. 5(c), the plume
approaches and barely touches the fault at the 25 year. By the 100
years (Fig. 5(d)), the CO2 saturation continued to move forward and
upward, resulting in a horizontal distance approximately 1200 m
further away from the fault.

3.1.2. Heterogeneous model
Fig. 6 illustrates the distribution of CO2 migration in the reser-

voir over a 100-year period in the heterogeneous model. From the
simulation results, we observe that the range of CO2 saturation
gradually increased over time, which is consistent with the con-
clusions drawn from the homogeneous model. However,
comparing Fig. 5(a) and (b) with Fig. 6, it is evident that the range of
the CO2 plume in the heterogeneousmodel is larger than that in the
homogeneous model. This is due to the stochastic distribution of
permeability near the injection well in the heterogeneous model
and exceeds that of the homogeneous model. In addition, areas
with higher permeability enables easier migration and storage of
CO2, thereby resulting in an increased size of CO2 plume. In Fig. 6(a)



Fig. 4. Flow chart for predicting the sensitivity of geological environmental factors to Qp, Vp, and seismic response in CO2 reservoir simulation.

Fig. 5. (a) CO2 injection for 25 years and (b) 100 years in a simple model; (c) CO2 injection for 25 years and (d) 100 years in a complex model.
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Fig. 6. (a) CO2 plume distribution over 25 years and (b) 100 years in heterogeneous case 1 model; (c) CO2 injection over 25 years and (d) 100 years in heterogeneous case 2 model.
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and (b), the CO2 plume extends further than that in Fig. 6(c) and (d).
This is mainly due to the higher permeability in the case 1 model
compared to the case 2model. Furthermore, in Fig. 6(c) and (d), CO2
migration extends notably further to the right of the injection well
than to the left. This is primarily due to slightly higher permeability
on the right side in the heterogeneous case 2 model (Fig. 2(b)).

3.2. Sensitivity analysis of reservoir modeling

To gain deeper insights into the impact of diverse geological
environmental factors and aquifer properties on CO2 saturation
post-injection, we selected four influential parameters for single-
factor sensitivity analysis. These parameters included porosity,
permeability, temperature, and formation pressure. It is worth
noting that the permeability variation is actually an order of
magnitude larger than the other three parameters. Hence, in order
to accurately depict the full range of permeability, we opted towork
with the log-permeability (log(Kh)), note that log(Kh) is a
Table 1
Selection of model parameters for sensitivity analysis.

Parameters �30% �20% �10% Base þ10% þ20% þ30%

Temperature, �C 36.61 41.84 47.07 52.3 57.53 62.76 67.99
Formation pressure, bar 77 88 99 110 121 132 143
Porosity, % 19.95 22.8 25.65 28.5 31.35 34.2 37.05
Log(Kh), mD 107 210 410 800 1561 3046 5943
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logarithmic functionwith a base number of 10. Notably, the change
in the horizontal permeability (Kh) resulted in a corresponding
change in the vertical permeability (Kv), given that the ratio be-
tween the two (Kh/Kv) remained constant. The specific value for this
ratio can be found in Wainwright et al. (2013). This section pri-
marily focuses on performing sensitivity analysis using the reser-
voir's CO2 saturation at the 100th year.

The parameter settings are detailed in Table 1, which we used
for dynamic carbon sequestration simulations. We utilized data
from a real CO2 sequestration project along with actual well logging
data. This helps us obtain a reference parameter set of these four
parameters, shown in the middle column of this table. Each time,
we perturbed one parameter of our base set by a certain percent-
age, to examine the change of the CO2 plume distribution.

3.2.1. Sensitivity analysis of homogeneous reservoir
3.2.1.1. Sensitivity analysis of simple models. As shown in Fig. 7(a)
and (b), it is evident that elevated temperatures promoted the
migration and distribution of supercritical CO2. This phenomenon
is primarily attributed to the increased kinetic energy of CO2 mol-
ecules within the reservoir, due to the rise in temperature. Conse-
quently, a higher temperature results in a more active gas phase
CO2 (Perera et al., 2012). With rising temperatures, CO2 in the
reservoir ceases to dissolve with water, instead persisting in a su-
percritical state, leading to an increase in mobile CO2. Based on
Henry's law, at a specific temperature and equilibrium state, the
solubility of CO2 in a liquid is directly proportional to the



Fig. 7. Distribution of CO2 saturation after 100 years of storage in a simple model. (a) Temperature: �30%; (b) temperature: þ30%; (c) formation pressure: �30%; (d) formation
pressure: þ30%; (e) log(Kh): �30%; (f) log(Kh): þ30%; (g) porosity: �30%; (h) porosity: þ30%.
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equilibrium pressure of CO2. With increasing formation pressure,
the available "space" for injecting CO2 into the reservoir diminishes,
resulting in reduced CO2 injection capacity and subsequently lower
CO2 concentrations within the reservoir (Perera et al., 2016).
Consequently, higher formation pressure leads to increased dis-
solved CO2 production and reduced gas saturation. As a result, the
range of the CO2 diffusion halo gradually diminishes, as shown in
Fig. 7(c) and (d).

In Fig. 7(e) and (f), the log(Kh) has a significant impact on the
transport of CO2 saturation. An increase in the log(Kh) during the
simulation enhances the rock's capacity to accommodate the flow
of CO2. The increasing permeability allows the fluid to penetrate
larger distances and occupy more space in the reservoir, leading to
a larger contact area between CO2 and water. As a result, an
increasing amount of CO2 dissolved inwater results in a decrease in
the free-phase CO2 saturation within the reservoir. As can be seen
from Fig. 7(g) and (h), the greater the porosity, the lower the CO2
saturation in the reservoir. Greater reservoir porosity may signify
increased pore space within the rock, but it may also indicate
Fig. 8. (a) The evolution of the maximum grid count for the transverse transport of CO2 acro
Sgi � 0:08 CO2 saturation of sensitivity analysis.
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improved connectivity among the pores, which facilitates CO2
diffusion and migration. Moreover, increased porosity in the
reservoir can enhance permeability, making it easier for CO2 to flow
through the rock's pores, reducing the retention time of CO2 in the
reservoir and subsequently lowering CO2 saturation.

To further characterize the migration of CO2 within the grid, we
measured the maximum horizonal distance of the CO2 plume, and
showed the measurement of each parameter set in Fig. 8(a).
Fig. 8(a) illustrates that the migration distance increases with
higher permeability and temperature, while decreases with
porosity and formation pressure. Specifically, the variation in the
log of permeability results in the most significant change in the CO2
migration distance, from 4200 m to 5700 m. Conversely, increasing
porosity confines the horizontal migration of CO2 the most,
reducing the distance from 6000m to 4800m. Because larger pores
retaining a significant portion of the CO2 and hindering its move-
ment to adjacent pores. While compared with the permeability and
porosity, the other two parameters of formation pressure and
temperature has less influences on the CO2 migration.
ss the entire region over 100 years in a simple model; (b) the key parameter 100 years



Fig. 9. Distribution of CO2 saturation after 100 years of storage in a complex model. (a) Temperature: �30%; (b) temperature: þ30%; (c) formation pressure: �30%; (d) formation
pressure: þ30%; (e) log(Kh): �30%; (f) log(Kh): þ30%; (g) porosity: �30%; (h) porosity: þ30%.
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To examine the sensitivity of these parameters to CO2 satura-
tion, we used Eq. (1) to compute the average saturation by setting
the threshold parameter t to 0.08. Fig. 8(b) shows the sensitivity
analysis of CO2 saturation, indicating that permeability is the most
contributing factor to the CO2 saturation change. According to
Darcy's law, permeability is linked to the flow velocity through the
porous medium. Therefore, an increase in permeability raises the
rate of CO2 passage under a consistent pressure gradient, leading to
a larger contact area with water. This results in the production of
more dissolved CO2 and decreased CO2 saturation with higher
permeability. In addition, we can observe from Fig. 8(b) that the
CO2 saturation decreases with the porosity, same observation as in
Fig. 7(g) and (h) with the same explanation.
3.2.1.2. Sensitivity analysis of complex models. We performed the
same sensitivity analysis of the CO2 saturation and CO2 migration
distance for the complex models. As shown in Fig. 9, the simulation
results for each perturb parameter. Fig. 10(a) and (b) show the
variations of the CO2 migration distance and average saturation
with the changes in parameters, respectively. We could draw the
Fig. 10. (a) CO2 saturation illustrates the maximum number of horizontal grids across th
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same conclusions as the simple model.
Furthermore, the complex model has fault cutting across the

target reservoir. As for the test in this model, we studied the effects
of faults on the transport and distribution of CO2. As shown in
Figs. 7 and 9, the CO2 plumemigrated further in the lateral distance,
when the temperature and log(Kh) increases, while formation
pressure and porosity decrease. Therefore, temperature and log(Kh)
help the CO2 plume reach the fault at an earlier time, and the for-
mation pressure and porosity prevent the CO2 plume from moving
towards the faults.

To further investigate how these various influencing factors
impact the plume migration across the fault, we performed a
quantitively sensitivity analysis, as shown in Fig. 11. To compute
Fig. 11, we first selected themidpoint located at x¼ 10500m, which
is on the left side of the fault. Then we found that the maximum
value of the saturation over the depth for this particular midpoint.
This maximum value changed with time, thus we plot this value
over time in Fig. 11. We can observe that the saturation values for
this selected point increases at the beginning and slightly drop
down since the injection stops.
e fault; (b) regional CO2 saturation of Sgi � 0:08 over 100 years in complex models.



Fig. 11. Temporal dynamics of CO2 saturation migration to fault: a 100-year perturbation study on (a) log(Kh), (b) porosity, (c) formation pressure, and (d) temperature.

Fig. 12. Distribution of the maximum simulated mobile CO2 saturation over 100 years
to the fault over time.
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In addition, in Fig. 11, the curves initially start at zero during the
CO2 injection, because the plume hasn't reached to this point yet.
Their onset time, at which the curve becomes non-zero, means
when the plume has crossed the fault and came to this point.
Therefore, the onset point of these curves can effectively reflect
how fast the plume has moved across the fault. The increasing
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log(Kh) and temperature, moved the plume migrate faster and
migrate over the faults more quickly. While porosity and formation
pressure slow down the migration speed, the fault-crossing time
became later. Among all the curves, we selected the ones corre-
sponding to the maximum parameters, including log(Kh), porosity,
formation pressure, and temperature increased by 30%, and plot
their correspondent curve in Fig. 12. We can observe that high
temperature makes the curve with the steepest slope and shortest
onset time (as see the zoom-in box), indicating that CO2migrated to
this area at the earliest. This phenomenon can be attributed to
higher temperatures enhancing the activity of CO2 and resulting in
a greater amount of free CO2 within the reservoir.

3.2.2. Sensitivity analysis of heterogeneous reservoir
We conducted a similar sensitivity analysis on the CO2 satura-

tion and migration distance in the heterogeneous model. We reach
the same conclusions as the homogeneous model. Increasing
temperature and log(Kh) result in the lateral migration distance of
the CO2 plume expanding further. Meanwhile, increasing formation
pressure and porosity lead to a decrease in CO2 saturation in the
reservoir. To compare the sensitivity of the four key parameters in
heterogeneous models, we perturbed these parameters using the
same method as the homogeneous model. We focused on perme-
ability, porosity, formation pressure, and temperature. Utilizing Eq.
(1), we conducted single-factor sensitivity analysis on CO2 satura-
tion across the entire region. The result indicates that the findings
in the heterogeneous models align with those in the homogeneous
model. Permeability is the most sensitive parameter to CO2 satu-
ration, as shown in Fig. 13.



Fig. 13. The CO2 saturation in regions where Sgi � 0:08 over 100 years in heterogeneous models (a) with case 1 model and (b) with case 2 model.

Fig. 14. (a) The curve of bottom-hole pressure variation over time after 100 years of CO2 injection in homogeneous and heterogeneous models; (b) the trend of average reservoir
pressure over time; (c) the curve depicting the variation of CO2 injection rate over time; (d) the plot showing the variation of cumulative CO2 injection volume over time.
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During CO2 sequestration simulation, evaluating post-injection
sealing is crucial for long-term stable storage. We analysed post-
injection effects in both homogeneous and heterogeneous
models. This analysis focuses on variations in bottom-hole pres-
sure, average reservoir pressure, CO2 injection rate, and cumulative
CO2 injection volume, as shown in Fig. 14. Fig. 14(a) illustrates that
during the CO2 injection period (25 years), pressure gradually in-
creases within the reservoir, leading to an increase in bottom-hole
pressure. After injection stopped, reservoir pressure gradually
203
decreases, leading to a reduction in bottom-hole pressure. One
primary concern is the relatively small size of the model 18 km
(x) � 4 km (y) � 3 km (z), which may contribute to rapid pressure
build-up during injection.

Furthermore, during the CO2 injection, the maximum bottom-
hole pressure of the blue line in Fig. 14(a) for case 2 model ex-
ceeds the specified 400-bar bottom-hole pressure boundary con-
dition. Because of the relatively lower average permeability of the
grid cells through which the CO2 plume migrated, the rate of CO2



Fig. 15. (a) 25-year 1=Qp of CO2 injection in a simple model; (b) monitoring reservoir 1=Qp for 100 years after CO2 injection; (c) CO2 injection for 25 years and (d) 100 years Vp.
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migration is slower. To inject an equivalent amount of CO2 within
the same timeframe and maintain a sufficient injection rate, we
needed to apply greater bottom-hole pressure. This helps overcome
the resistance of the rock medium. However, in the heterogeneous
case 1 model, the bottom-hole pressure is lower than that of the
homogeneous model. This suggests that the average permeability
around the injection well in the grid cells is higher than that of the
homogeneous model. After injection stopped, the bottom-hole
pressure gradually decreases in both homogeneous and heteroge-
neous models. From Fig. 14, we observe that in both homogeneous
and heterogeneous models, the difference in bottom-hole pressure
during CO2 injection is notable. However, the impact on average
pressure in other reservoirs, CO2 injection rate, and cumulative CO2
quantity appears insignificant in this dynamic CO2 plume trapping
process, as shown in Fig. 14(b)e(d).

In summary, this study analyses the results of dynamic reservoir
simulations of CO2 plumes. It also conducts sensitivity analyses on
the four key parameters of homogeneous and heterogeneous
models. We found consistent results between homogeneous and
heterogeneous models. Permeability is the most sensitive param-
eter to CO2 saturation, as shown in Figs. 8(b), 10(b) and 13. These
findings suggest that the sensitivity analysis of CO2 saturation has
minimal impact in this study's sealing simulation. It applies to both
homogeneous and heterogeneous models. Therefore, in the next
section, we will conduct sensitivity analysis on Qp and Vp using an
ideal homogeneous flat simple model.
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3.3. Rock physics modeling

In this section, we computed Vp and Qp using Eqs. (2)e(8).
Fig. 16(a) and (b) show the Vp and Qp values with respect to CO2
saturation. Both figures show a critical point at which Qp and Vp

reaches to their minimal value with saturation. Thus, attenuation
first increases with CO2 saturation, and increases after the critical
point. However, the velocity decreases when the CO2 starts to
inject, because CO2 reduces the rock modulus. Meanwhile, CO2
reduces the density of the fluid, so after a critical point, the influ-
ence of the density change dominates and the velocity builds up
again.

Same as above, we perturbed four parameters: permeability,
porosity, formation pressure, temperature, and explored which
parameter most influenced Vp and Qp. In the following section, we
only showed the results and conclusions homogeneous flat simple
model, because both the homogeneous and the heterogeneous
models yield identical observations. As for the simple model, we
established the baseline velocity values as Vp ¼ 2500 m/s for the
first layer, Vp ¼ 3033 m/s for the second layer, and Vp ¼ 2680 m/s
for the third layer. In terms of Qp, the baseline value is set at
100,000, which means no attenuationwithin the seismic frequency
range before CO2 injection.

Fig. 15(a) and (b) illustrate the 1=Qp (attenuation) model at the
25-year and 100-year, respectively. Fig. 15(c) and (d) show the ve-
locity model at the 25-year and 100-year, respectively. In cases



Fig. 16. The relationship between CO2 saturation (a) 1�
Qp

and (b) Vp; the sensitivity of (c) 1�
Qp

and (d) Vp in the influencing factor.

Fig. 17. Time-lapse migration imaging results of (a) the sensitive model and (b) the insensitive model following the injection of CO2.
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where porosity remains constant, a gradual increase in CO2 satu-
ration within the reservoir from 25 to 100 years, consequently
leading to an increase in attenuation. Notably, the rate at 25 years is
distinctly lower than the rate observed at 100 years (see Fig. 15(c)
and (d)). We notice the attenuation increases from the baseline to
the year of 25, and continues to increase at the year of 100. This is
because the saturation range of our simulated plume is from 0.1 to
0.3, and the attenuation keeps increasing as indicated by the arrow
in Fig. 16(a). On the other hand, the velocity decreases at the year of
25 and increases afterward. As indicated by the arrow in Fig. 16(b),
we see the from year of 25 to year of 100, saturation decreases and
moves across the critical point. So, we see the velocity increased at
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year of 100 as shown in Fig. 15(d) when compared with the year of
25.

Fig. 16(c) and (d) show the sensitive analysis of the four influ-
ential parameters to Vp and Qp at the year of 100. Although the
permeability has the most substantial impact on CO2 saturation,
Fig. 16 shows that porosity has the most significant impact on both
Vp and Qp. Because the porosity changes the portion of the movable
CO2, influencing the modulus and density of the rock and altering
the cross-flow in the pores. Additionally, Fig. 16 indicates that
increased porosity reduces attenuation and enhances velocity, in
contrast to natural gas behaviour (Mavko et al., 1995; Shen et al.,
2018c). Due to the short-term migration of the CO2 compared



Fig. 18. Seismic tracing after CO2 injection in the (a) sensitive model and (b) insensitive model.

Fig. 19. (a) The spectra of Fig. 17(a) (blue) and Fig. 17(b) (red); (b) the logarithm of the ratio of the blue curve to the red curve in Fig. 17(a), note that log($) is a logarithmic function
with a base number of e.
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with natural gas and the limited amount of the injection volume.
The large porosity decreases the CO2 saturation, causing the satu-
ration become smaller than the critical point at 100 years, so that to
reduce the attenuation and enhance the velocity before critical
point, as shown in Fig. 16.
3.4. Seismic image

Based on the above analysis, using visco-acoustic wave Eq. (9),
we performed seismic forward modeling and reverse time migra-
tion without compensation, where with the time-lapse models
being the greatest and least sensitive to Qp and Vp, respectively.
Specifically, the most sensitive parameters to Qp and Vp is porosity
as we described above, and the permeability is the relatively least
sensitive. We chose the sensitive model as denoted by red circle in
Fig. 16(c), and the insensitive model as denoted by blue circle in
Fig. 16(c). The forward modeling of the time-lapse data considers
both velocity changes and attenuation changes over time, while the
migration only accounts for the velocity change without compen-
sating for any attenuation. Therefore, Fig. 17 primarily emphasizes
the attenuation effects. In comparison to Fig. 17(b) and 17(a)
generated by the sensitive model has stronger seismic response
with stronger attenuation, in terms of the weakened amplitudes,
decreased resolution and distorted phase.

To better display the attenuation effects, we selected 10 seismic
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traces and showed their zoom-in plots in Fig. 18. The zoom-in lo-
cations are situated near the CO2 injectionwell. We noticed that the
amplitudes in Fig.18(a) is notably weaker than the one in Fig.18 (b).
In this synthetic example, we expected the wavelet of our migrated
events being the zero phase. Attenuation disperse the phase ve-
locity and distort the wavelets. We could see that the sensitive
model attenuated the events further and distorted the wavelet
further away from the zero phase.

To better evaluate the attenuation effect, we computed the
spectra of the area around the CO2 injection well, as shown in
Fig. 19(a). We defined the red curve in Fig. 19(a) as insensitive
spectra, which means the spectra is computed from the image
migrated using the insensitive model. Same for the blue curve in
Fig. 19(a), we defined it as the sensitive spectra. We saw that the
sensitive spectra have a large attenuation effect, which has a larger
amplitude decays especially at the high frequencies. Therefore, the
central frequencies of the blue curve have a downward shift to the
lower frequencies, as the arrow indicated. To quantify the spectral
decay, we employed the spectral ratio method (Tonn, 1991). Based
on the theory of spectral ratio method, we computed the ratio of
the blue curve and red curve. Then, we took the logarithm of the
ratio, resulting in a linear line over the frequencies. The value of the
slope effectively quantifies the difference of the attenuation effects
between the blue and red spectra. Fig. 19(b) shows a curve that
could be approximated as a linear line. This line has a notable
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negative slope, indicating the blue curve have more attenuation
than the red one. The seismic responses coincide with the sensi-
tivity of petrophysical parameters to Qp and Vp. We could effec-
tively quantify these sensitivities in a post-migration analysis
manner. In return, we could use the seismic response to predict the
petrophysical model. This will be our future work.

4. Conclusions

In this study, we integrated the reservoir modeling, rock physics
model and seismic modeling to characterize the properties of the
saline aquifer and examine these properties to the CO2 storage. We
concentrated on four parametersdpermeability, porosity, forma-
tion pressure, and temperaturedto analyse the petrophysical and
seismic response of CO2. The following conclusions can be drawn.

(1) We conducted sensitivity analysis using both homogeneous
and heterogeneous models. The homogeneous models con-
sisted of a simple model with flat layers and a more realistic
model with anticline and faults cutting through. The het-
erogeneous models consisted of random models for case 1
and case 2. Each model is generated by the SGSIM algorithm
with the same variogram model. Both homogeneous and
heterogeneous models produce consistent conclusions. The
results suggest that an increase in temperature and log(Kh)
leads to increase CO2 saturation, while porosity and forma-
tion pressure decreases.

(2) Regarding the sensitivity analysis, we individually perturbed
each parameter to calculate how their variations affected the
CO2 saturation. We found that permeability is the primary
factor influencing changes in CO2 saturation among these
four parameters. This finding remains consistent for both
homogeneous and heterogeneous models. Therefore, when
exploring the sensitivity of CO2 saturation to Qp and Vp, we
only analysed a simple model with flat layers in the homo-
geneous model. The results indicate that porosity is a sig-
nificant factor affecting Qp and Vp. It is observed that an
increase in porosity leads to an increase in both Qp and Vp,
contrary to observations in gas reservoirs.

(3) The viscoacoustic wave equation is applied for seismic for-
ward modeling and reverse time migration without
compensation. The seismic simulation results reveal sub-
stantial variations in seismic response to different parame-
ters. We provided spectral analysis for these observations,
which can effectively quantify the variation in the sensitivity,
potentially aiding petrophysical model estimation in the
future.
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Appendix A

Feasibility verification of the proposed simulation using the
Johansen Dataset

We have chosen to validate the effectiveness of our method
utilizing the Johansen formation, which features sparse sandstone
conditions. The Johansen formation, located offshore the southwest
coast of Norway, serves as a potential site for large-scale CO2 stor-
age. The dataset provided by https://co2datashare.org/dataset
presents the CO2 sequestration projects within the Johansen for-
mation. The structure and injection well location of this dataset
exhibit great similarity to our complex model.

Additionally, the Johansen Formation is situated approximately
2700 m below sea level, featuring a porosity range of 7.3%e31.4%
and a permeability range spanning from 0.1 to 500 mD (Bergmo
et al., 2009; Marashi, 2022). PVT (Pressure, volume, temperature)
data is presented based on the characteristics of water and CO2 at a
steady temperature of 94 �C. The original pressure is recorded at
313.1 bar while at a true vertical depth of 3100 m. The injection
strategy begins in 2014 and consists of 25 years of continuous CO2
injection, followed by an additional 75 years of monitoring through
shut-inwells. During the simulation, the annual injection volume of
CO2 is 1.5 Mt, with a CO2 injection rate of 2091990 sm3/day. The
other parameter Settings for simulating CO2 injection in the
Johansen Formation in Eclipse 300 are consistent with the model
we built in this paper, and the simulation results are shown in
Fig. 20. Fig. 20 share same modeling results compared to the model
we constructed in this paper, highlighting the effectiveness of the
proposed method. After the injection of CO2, the CO2 plume in the
reservoir grows in size and extends further over time. The simu-
lation results are consistent with those presented in Sundal et al.
(2015) for the basic case #A of the Johansen Formation local
model. As a result, this example demonstrates the feasibility of our
method for monitoring injected CO2.

https://co2datashare.org/dataset/the-johansen-dataset
https://co2datashare.org/dataset


Fig. 20. Simulation results of the Johansen Formation: (a) CO2 plume distribution over 25 years (b) CO2 plume distribution over 100 years.
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