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a b s t r a c t

Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock
brittleness evaluation. Conventional methods often rely on indirect computation or approximations of
the Zoeppritz equations to estimate Young's modulus, which can introduce cumulative errors and reduce
the accuracy of inversion results. To address these issues, this paper introduces the analytical solution of
the Zoeppritz equation into the inversion process. The equation is re-derived and expressed in terms of
Young's modulus, Poisson's ratio, and density. Within the Bayesian framework, we construct an objective
function for the joint inversion of PP and PS waves. Traditional gradient-based algorithms often suffer
from low precision and the computational complexity. In this study, we address limitations of conven-
tional approaches related to low precision and complicated code by using Circle chaotic mapping, L�evy
flights, and Gaussian mutation to optimize the quantum particle swarm optimization (QPSO), named
improved quantum particle swarm optimization (IQPSO). The IQPSO demonstrates superior global
optimization capabilities. We test the proposed inversion method with both synthetic and field data. The
test results demonstrate the proposed method's feasibility and effectiveness, indicating an improvement
in inversion accuracy over traditional methods.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, challenges associated with conventional reser-
voirs have driven increased interest in exploring and producing
from unconventional resources (Zhou et al., 2021; Wang et al.,
2022; Chen et al., 2022a). Specifically, investigating shale reser-
voirs often necessitates hydraulic fracturing (Ding et al., 2022).
Rock physics research highlights Young's modulus and Poisson's
ratio as crucial indicators for evaluating rock brittleness and frac-
ture intensity (Yin and Zhang, 2014; Song et al., 2023). Therefore,
accurately extracting parameters related to Young's modulus and
Poisson's ratio from seismic data is crucial for comprehensive
reservoir characterization, brittleness assessment, and predicting
optimal drilling zones in unconventional oil and gas fields (Wang
et al., 2022; Zhou et al., 2022a).
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Pre-stack seismic data contain extensive geological, lithological,
fluid, and other relevant information (Buland and Omre, 2003; Yan
et al., 2021). The amplitude versus offset (AVO) technique is
essential for extracting elastic parameters from pre-stack seismic
datasets. Significant advances in AVO inversion technology have
made it a widely used tool in the modern petroleum industry
(Ahmed et al., 2023; Chen et al., 2022b; Ouyang et al., 2023). AVO
analysis relies heavily on evaluating the reflection coefficient be-
tween subsurface media, as described by the Zoeppritz equation
(Pan et al., 2019). Due to its complexity, the Zoeppritz equation has
been approximated under various idealized conditions by scholars
(Aki and Richards, 1980; Shuey, 1985; Smith and Gidlow, 1987; Fatti
et al., 1994). Substantial research based on these approximate
equations has produced widely adopted industry findings. How-
ever, the derivation of the approximate reflection coefficient for-
mula requires assumptions of small incident angles and weak
parameter contrasts, which may limit the effective handling of
seismic amplitude information, especially at far offsets (Wang et al.,
2023). Furthermore, these approximation conditions result in the
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formula being relatively insensitive to changes in density, thereby
reducing the accuracy of provided density information. Conse-
quently, despite its simplified form, the approximated equation
inherently restricts the accuracy of pre-stack inversion (Zhi et al.,
2018; Cheng et al., 2022). Therefore, pre-stack inversion based on
the exact Zoeppritz equation is a critical step towards enhancing
inversion accuracy.

Brittleness is a critical factor in unconventional oil and gas
exploration. The key parameters for predicting sweet spots and
assessing brittleness are Young's modulus and Poisson's ratio (Zhou
et al., 2017). Typically, reservoirs with high Young's modulus and
lower Poisson's ratio exhibit increased brittleness. These parame-
ters are also essential for calculating the reservoir's brittleness in-
dex, providing valuable guidance for horizontal well placement and
hydraulic fracturing strategies (Li et al., 2021; Miao et al., 2024).
Young's modulus and Poisson's ratio are generally determined
through indirect methods. The indirect method involves obtaining
velocity and density information from seismic data, followed by the
calculation of Young's modulus and Poisson's ratio using petro-
physical relations. However, this indirect approach is susceptible to
cumulative errors, which can reduce the accuracy of the inversion
process.

In response to the limitations of indirect inversion methods,
numerous scholars have developed direct inversion approaches for
determining Young's modulus and Poisson's ratio. These ap-
proaches involve deriving reflection coefficient equations that
explicitly include Young's modulus and Poisson's ratio. Zong et al.
(2012) derived a linear relationship between the PP wave reflec-
tion coefficient and Young's modulus, Poisson's ratio, and density
(YPD equation) from the Aki approximate equation. The reflection
coefficient formula, derived from the approximate equation, is
susceptible to assumptions of small incident angles and weak
parameter contrasts, leading to inaccurate inversion results.
Adopting the exact Zoeppritz equation can partially address these
issues. Chen et al. (2022a) transformed the PP wave equation from
the exact Zoeppritz equation into a form that includes Young's
modulus, Poisson's ratio, and density, proposing a nonlinear
inversion approach with promising application results in practical
fields. Similarly, Song et al. (2023) conducted a comparable deri-
vation and applied it to sandstone reservoirs. These studies aim to
further derive the exact Zoeppritz equation into a new form that
incorporates Young's modulus, Poisson's ratio, and density for
application in subsequent inversion studies.

The inversion of PP waves using the exact Zoeppritz equation
has been extensively researched by numerous scholars, yielding
significant findings. However, seismic inversion problems are often
ill-posed, making it difficult to obtain reliable estimates from PP
wave seismic data alone (Liu and Xia, 2004; Yang andWang, 2022).
In contrast, PS wave seismic data contain abundant information
about density and fluid properties (Damasceno et al., 2021). Inte-
grating PS wave seismic records into the PP-PS wave joint inversion
process can produce more accurate inversion results, reduce un-
certainty in reservoir interpretation, and improve inversion accu-
racy. Lavaud et al. (1999) used the adjoint state method for joint PP-
PS nonlinear inversion and showed that the addition of PS AVO
information improves the inversion results. Russell et al. (2005)
used the PP-PS wave joint inversion to invert for acoustic imped-
ance and density. Khare and Rape (2007) examined the sensitivity
of joint inversion of PP/PS data to different PP and PS angle ranges.

The joint inversion of PP-PS waves, based on the exact Zoeppritz
equation, represents a highly nonlinear problem (Grechka et al.,
1999; Jenkinson et al., 2010; Lu et al., 2015). Traditional gradient-
based algorithms lack the accuracy required to handle such
complexity (Liu et al., 2023a, 2023b). Swarm intelligence optimi-
zation algorithms, which are based on meta-heuristics,
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demonstrate excellent global optimization performance, versatility,
and suitability for parallel processing, making them valuable tools
for solving geophysical inverse problems (Liu et al., 2024; Pan et al.,
2017; Tang et al., 2023). Many scholars have investigated the
application of intelligent optimization algorithms in geophysics
(Grana et al., 2022; Meng et al., 2023; Shi et al., 2024). Particle
swarm optimization (PSO), a conventional intelligent optimization
algorithm, has been widely applied in the engineering (Kennedy
and Eberhart, 1995). However, issues pertaining to its limited
global optimization performance and the intricacies associated
with parameter settings have become increasingly pronounced.
The quantum particle swarm optimization (QPSO) algorithm,
which incorporates quantum behavior, eliminates dependence on
the directional movement attribute of particles (Sun et al., 2004,
2012). This modification makes the update of particle positions
independent of their previousmovements, thereby enhancing their
positional randomness and significantly improving global optimi-
zation capabilities. It is noteworthy that the quantum particle
swarm optimization (QPSO) also has the flaw of easily falling into
local minima, and scholars have conducted extensive research on
improvements to intelligent optimization algorithms. Improve-
ments to intelligent optimization algorithms typically involve
increasing the initial population diversity and incorporating mu-
tation strategies, among other methods. Building on previous en-
hancements, this paper introduces Circle chaotic mapping to
mitigate issues like clustering of initial solutions, inadequate
coverage in the solution space, and limited diversity among in-
dividuals, thereby enhaning sample diversity. Studies have shown
that incorporating the L�evy flight strategy into intelligent optimi-
zation algorithms can help avoid local minima and improve global
search optimization capabilities. In pre-stack AVO inversion, the
inversion results for density are inferior to other parameters. This is
mainly due to the insensitivity of density in the inversion objective
function. To address this issue, this paper introduces a Gaussian
mutation strategy specifically into the density term inversion to
improve the inversion accuracy of the density term. Integrating
these improvement strategies, we propose an enhanced quantum
particle swarm optimization named improved quantum particle
swarm optimization (IQPSO).

We present a precise solution form of the exact Zoeppritz
equation, which is subsequently rederived to include only Young's
modulus, Poisson's ratio, and density. Within the Bayesian inver-
sion framework, we then construct a nonlinear inversion objective
function. To solve this objective function, the newly introduced
IQPSO algorithm is employed. The efficacy of the proposed method
was evaluated using both single well synthetic and actual pro-
duction data. Test results indicate that our proposed Young's
modulus nonlinear inversion method, based on the exact Zoeppritz
equation, accurately extracts Young's modulus and Poisson's ratio
from seismic data. This resarch offers a novel method for reservoir
prediction and formation brittleness evaluation.

2. Methodology

2.1. Derivation of the reflection coefficient formula expressed in
terms of Young's modulus, Poisson's ratio, and density

The primary objective of AVO inversion is to extract P-wave
velocity, S-wave velocity, and density from pre-stack seismic data.
Commonly, traditional inversion methods rely on the approximate
reflection coefficient formulas. To achieve greater accuracy in the
inversion process, this study adopts the exact Zoeppritz equation as
the forward operator. The exact Zoeppritz equation describes the
relationships among elastic parameters, reflection coefficients, and
transmission coefficients when P waves are incident on the
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interface of isotropic media, as detailed in Eq. (1).
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In the above formula, RPP, RPS, TPP and TPS represent the PP wave
reflection coefficient, PS wave reflection coefficient, PP wave
transmission coefficient and PS wave transmission coefficient,
respectively. VP represents the P wave velocity, VS represents the PS
wave velocity, r represents the density, and the subscripts 1 and 2
respectively represent the medium parameters on the upper and
lower sides of the interface. Furthermore, q and 4 represent the
angles of the PP wave and the PS wave respectively, and the sub-
scripts 1 and 2 represent the reflection angle and transmission
angle respectively.

As shown in Eq. (1), the exact form of the Zoeppritz equation is
notably intricate. During program implementation, frequent
inversion operations are necessary, which may compromise solu-
tion accuracy. To address this challenge, Aki and Richards (1980)
solved the exact Zoeppritz equation and provided a more concise
solution form. The formulations in Eqs. (2) and (3) articulate the
exact solutions for the reflection coefficients of PP waves and PS
waves. This paper primarily focuses on the analytical solutions for
the PP wave reflection coefficient and PS reflection coefficient in its
discussions.

RPP ¼
h
E�F �GþHP2

i.
D (2)

RPS ¼ � 2
cos q1
VP1

�
abþ cd
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cos 42
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�
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where,
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The parameter P in the above formula is given by Snell's law:
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The relationship between Young's modulus, P wave velocity, and
S wave velocity can be expressed as Eq. (5):
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Poisson's ratio is the absolute value of the ratio of transverse
strain to longitudinal strain, effectively reflecting the rock's physical
properties and the fluid information of the reservoir. Its relation-
ship with the velocities is expressed in Eq. (6):
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Substituting Eqs. (4)e(6) into Eqs. (2) and (3), the reflection
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coefficient equation represented by Young's modulus, Poisson's
ratio, and density can be obtained:

RPP ¼
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To evaluate the accuracy of the rewritten Rpp equation based on
the analytical solution of the Zoeppritz equation, we selected the
gas-bearing sandstone and shale model proposed by Ostrander
Table 1
Model for gas-bearing sandstone and shale.

Vp, km/s Vs, km/s Den, g/cm3 E, 109 N/m3 s

Model I 3.048 1.244 2.4 10.3999 0.4001
2.438 1.625 2.14 12.4354 0.1003

Model II 2.438 1.625 2.14 12.4354 0.1003
3.048 1.244 2.4 10.3999 0.4001
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(1984). We compared the rewritten reflection coefficient equa-
tion, the Aki-Richards approximation formula, and the exact
Zoeppritz equation. The model data are shown in Table 1, and the
comparison results are shown in Fig. 1.

2.2. Construction of inversion objective function

Most geophysical inverse problems are characterized as ill-
posed (Liu et al., 2023b; Zhou et al., 2022b). Within the Bayesian
framework, inversion serves a dual purpose: it not only aims to
identify an optimal solution but also facilitates uncertainty analysis
of the inversion outcomes within a probabilistic paradigm (Pan
et al., 2019). A key distinction from classical statistical theory is
the incorporation of prior information. Consequently, formulating
an objective function under the Bayesian framework to derive the
maximum posterior probability distribution of a numerical model
is widely regarded as a robust and effective approach for tackling
geophysical inverse problems.

PðmjdÞ¼ PðdjmÞPðmÞ
PðdÞ fPðdjmÞPðmÞ (9)

Among them, d is the actual observation record,m is the model
parameter. P(m) is the prior probability of the model, that is, the
model parameters are constrained through some experience, such
as previous research data, geological information, drilling data,
Stratigraphic sections, etc. P(djm) is the probability of the obser-
vation data d under the condition of the model m, which is called
the likelihood function. P(d) is themarginal probability distribution
of the observation data d. P(mjd) is the posterior probability of
model m under the condition of observation record d.

The outcomes of probabilistic Bayesian inversion methods often
exhibit significant uncertainties. To address this, the prior distri-
bution of model parameters is incorporated to enhance constraints
and improve the well-posedness of the inversion. Commonly used
prior distributions encompass the Gaussian, Huber, and Cauchy
distributions. Each distribution imparts distinct general character-
istics, leading to varying regularization constraints. Assuming that
the model parameters (Young's modulus, Poisson's ratio, and
density) follow the three-variable modified Cauchy distribution,
then:

PðmÞ ¼ 1

pð2ndÞjcjnd=2
exp
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ðm�uÞTziðm�uÞ
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Among them, c is a 3 � 3 covariance matrix containing the
statistical correlation between model parameters, u is the average
value of the model parameters, obtained from prior information.

zi ¼ DT
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The construction of the likelihood function typically relies on a
noise model. A common assumption in this context is that the noise
follows a Gaussian distribution, leading to the formulation of the
likelihood function as:

PðdjmÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 1. Comparison of different reflection coefficient formulas. (a)e(b) Model I; (c)e(d)Model II.
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where, Cd represents the covariance matrix of data noise, and G(m)
is the theoretical data obtained by forward modeling of model m.
According to the prior probability and likelihood function of the
model parameters, the posterior probability of the model param-
eters can be obtained to satisfy:
PðmjdÞfexp

 
� 1
2
ðd� GðmÞ ÞTC�1

d ðd� GðmÞ Þ �
Xnd

i¼1

ðm�uÞTziðm�uÞ
1þ ðm�uÞTziðm�uÞ

!
(13)
Applying the natural logarithm to both sides of Eq. (13) and
multiplying the result by �1 to convert the maximum value of the
posterior distribution probability function into the minimum value
of the following objective function:

JðmÞ ¼ 1
2
ðd� GðmÞ ÞTðd� GðmÞ Þ þ mGðmÞ (14)

where,

GðmÞ ¼
Xnd

i¼1

ðm�uÞTziðm�uÞ
1þ ðm�uÞTziðm�uÞ

;
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which is the constraint item for a prior information. m ¼ s2nd
, rep-

resents the variance of the data noise, serving as a weight factor to
regulate the influence of prior information in the weighting
process.

PP-PS joint inversion reduces the uncertainty of the inversion by
introducing S wave seismic data. Extending Eq. (14) to multi-wave
seismic data, the objective function of joint longitudinal and
transverse wave inversion number can be obtained, as shown in Eq.
(15), where t is the weight coefficient that controls the participa-
tion of PS wave data in the inversion. The value of t is determined
by the ratio of the noise variances of the PP and PS waves. Let the
noise variance of the PP wave seismic data be sPP, and the noise
variance of the PS wave seismic data be sPS, then t ¼ sPP=sPS. In
actual seismic records, the weight of PS-waves is obtained through
multiple tests of seismic data near the well, typically, a value of 1
can be used for testing.
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JðmÞ ¼ 1
2
ðdPP � GPPðmÞ ÞTðdPP � GPPðmÞ Þþ

t

2
ðdPS � GPSðmÞ ÞTðdPS � GPSðmÞ Þ þ mGðmÞ

(15)
2.3. Improved quantum particle swarm optimization

Inspired by the regularity of birds' foraging behavior, Kennedy
and Eberhart (1995) proposed the traditional particle swarm opti-
mization (PSO) algorithm. The PSO algorithm is characterized by its
simplicity, ease of implementation, and fast convergence speed.
However, it also suffers from several drawbacks, including the need
to set numerous parameters, poor global optimization capabilities,
and tendency to fall into local minima. Sun et al. (2004, 2012)
introduced the concept of qubits to make particles have quantum
behavior and proposed a quantum particle swarm optimization
algorithm (QPSO). In the QPSO algorithm, each particle's position is
represented as a probability distribution rather than a fixed value,
which enhances the global search ability and allows for greater
exploration in the search space. Building on previous work, this
study further optimizes and improves the QPSO by multiple
enhancement strategies. By employing multiple strategies to
enhance the QPSO algorithm, we introduced an improved Quantum
Particle swarm optimization, which we have named IQPSO.

The core of the QPSO algorithm lies in transforming the deter-
ministic description of particles' positions and velocities into a
probabilistic description, a change achieved by simulating the
behavior of quantum particles. Quantum particles differ from
classical particles in that they do not follow a definite trajectory,
and their positions are expressed as probability density functions.
In the QPSO algorithm, particles lack velocity vectors, so during the
ith iteration, the particle update can be described as:

Xðiþ1Þ ¼ Pi � b*ðmBest � XiÞ*lnð1=uÞ k � 0:5
Xðiþ1Þ ¼ Pi þ b*ðmBest � XiÞ*lnð1=uÞ k<0:5 (16)

where,

Pi ¼ 4*pBesti þ ð1� 4Þ*gBesti (17)

mBest ¼ 1
N

XN
i¼1

pBesti (18)

mBest represents the average best position of the particle pop-
ulation, defined as the average of all particles' best positions (global
optimal position). pBest denotes the best position of a particle
during the current iteration (individual optimal position). N rep-
resents the number of particles in the population. In the QPSO al-
gorithm, Pi serves as a local attraction factor, determined by both
the individual optimal position and the global optimal position. The
4 in the expression is a random number between 0 and 1. In Eq.
(16), both k and u are random numbers between 0 and 1.

Parameter b, the only manually specified constant in the QPSO
algorithm, is termed the compression-expansion coefficient, which
regulates the algorithm's convergence speed. b plays a critical role
in the algorithm; a larger b value facilitates global exploration in the
early stages, while a smaller b is suitable for local optimization in
the later stages. In this paper, we set b to linearly decrease within
the range between 0.5 and 1 according to Eq. (19), i denotes the
current iteration count, NI indicates the total number of iterations.
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b¼ðbmax � bminÞ*ði� 1Þ
NI

þ bmin (19)

The above process describes the particle updating process in the
QPSO algorithm. Compared to the PSO algorithm, the QPSO algo-
rithm features simpler parameter design and stronger global opti-
mization capabilities; however, it still tends to fall into local
minima. In intelligent optimization algorithms, the quality of
optimization results largely depends on the initial population's
exploration of the solution space. The classical QPSO algorithm
initializes the population using functions that generate a normal
distribution. Populations generated by this method lack random-
ness and uniformity, failing to effectively cover the entire solution
space. To address this issue, we implemented Circle chaotic map-
ping for population initialization, as described in Eq. (20).

xiþ1 ¼ mod
�
xi þ 0:2�

�
0:5
2p

�
sinð2pxiÞ;1

�
(20)

Fig. 2 illustrates the results of population distributions gener-
ated by two distinct functions for a population size of 200. The
initialization method using chaotic mapping shows a more orderly
overall population distribution compared to the random initiali-
zation method. The random initialization assumes that the popu-
lation follows a normal distributionwith a mean of 0.5, resulting in
a concentration around the this mean. In contrast, the chaotic
mapping initialization provides a more structured distribution,
offering greater exploration possibilities for particles, ensuring
population diversity, and reducing the risk of convergence to local
optima (Verma et al., 2022). Therefore, introducing Circle chaotic
mapping for population initialization allows for a more thorough
exploration of the solution space, enhancing the algorithm's global
optimization capabilities. Another approach to prevent QPSO al-
gorithms from getting trapped in local minima is the introduction
of the L�evy flight strategy. The L�evy flight strategy involves a
randomwalk after each iteration, jumping to positions relatively far
from the current optimum and recalculating the fitness values. If
the fitness value at this new position is lower than that at the
current optimum, it is considered an escape from the local mini-
mum. The formula for this random walk is expressed as:

xiþ1 ¼ xi þ a*sign½rand�1 =2�4LevyðmÞ (21)

The step length of L�evy flight is Levy(m), which can be expressed
as

LevyðmÞ¼ m

jvj1=b
(22)

where, b is defined as one constant. In our work, we let b ¼ 1:5, m ¼
Nð0;s2mÞ,and v is a random number between 0 and 1.

Regardless of the improvement strategy employed, the multiple
solutions and ill-posed of geophysical inverse problems must be
considered. Particularly in AVO inversion, the density parameter is
relatively insensitive to the inversion objective function. A Gaussian
mutation strategy has been introduced for the density term. By
implementing a Gaussian mutation strategy, normally distributed
random numbers are applied at probability p to the current optimal
position to create new positions. In this paper, a high mutation
probability is set, with p valued at 0.6. The purpose of introducing
the Gaussian mutation strategy is to increase the variety of search
possibilities for the density term and enhance the algorithm's
sensitivity to this parameter. The mutation process is described as
follows:



Fig. 2. Distribution of the initial populations of different methods. (a) Rand; (b) circle chaotic mapping.

Fig. 3. The flowchart of IQPSO.
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xbestðiþ1Þ¼ xbestðiÞ*ð1þGaussanðsÞÞ (23)

GaussanðsÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
s
e�

ðx�mÞ2
2s2 (24)

The introduction of the Circle chaotic mapping strategy has
improved the initial population's exploration of the solution space,
aiding in a thorough search by the algorithm. By incorporating the
L�evy flight strategy, the algorithm's global optimization capacity is
strengthened, avoiding the pitfalls of local minima. Furthermore, by
specifically introducing a Gaussian mutation strategy, the algo-
rithm becomes more sensitive to the density term in geophysical
inversion problems, enhancing the precision of density inversion.
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With these three strategic improvements, the newly proposed
IQPSO algorithm is more suitable for the inversion problems dis-
cussed in this paper, with further enhanced global search capabil-
ities. Comparative tests with examples are provided later. The
flowchart of the IQPSO algorithm is shown in Fig. 3.
3. Synthetic seismic recording test

In this section, synthetic angle gather seismic records are used
to evaluate the inversion effect and reliability of the proposed
Young's modulus nonlinear inversion method based on the exact
Zoeppritz equation. Using real well data, Young's modulus and
Poisson's ratio curves are constructed as model parameters to be



Fig. 4. Model parameters to be estimated. E is the Young's modulus data; s is the
Poisson's ratio; r is the density.
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estimated, as shown in Fig. 4.
The range of incidence angles for the synthetic multi-wave

seismic data from 1� to 45�. The PP and PS wave reflection co-
efficients at different incidence angles are calculated using the
newly accurate reflection coefficient form, as shown in Eqs. (7) and
(8). Convolution of the obtained reflection coefficients with a Ricker
wavelet, which has a dominant frequency of 30 Hz, generates the
synthetic multi-wave seismic recordings. To assess the noise
resistance of the proposed algorithm, Gaussian random noise with
signal-to-noise ratios (SNR) of 2 and 5 is added to the noiseless
synthetic seismic records, producing noisy synthetic seismic re-
cords, as shown in Fig. 5. It is particularly important to note that,
when the signal-to-noise ratio is 2, sPP=sPS ¼ 0:9216, when the
signal-to-noise ratio is 5, sPP=sPS ¼ 0:9458.

Intelligent optimization algorithms require predefined param-
eter ranges when addressing geophysical inverse problems. To
simulate the conditions of actual seismic inversion, this paper sets a
hard constraint for the iteration range to fluctuate up and down
30% from the real value. Additionally, the conventional least
squares iterative algorithm for comparison to evaluate the
nonlinear inversion effects of Young's modulus based on the exact
Zoeppritz equation. To better demonstrate the advantages of the
method proposed in this paper, the following comparisons of
different inversion methods were conducted. Fig. 6 shows the
Fig. 5. Synthetic prestack angle gathers. (a)e(b) PP and PS wave angles gather without nois
and (e)e(f) PP and PS wave angles gather with added random noise with noise S/N ¼ 2.
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inversion results under different noise conditions using the
nonlinear inversion method proposed in this paper. Fig. 7 shows
the inversion results obtained indirectly through the Aki-Richards
formula. Fig. 8 shows the results of direct joint PP-PS wave inver-
sion using the least squares algorithm. In Figs. 6e8, the blue lines
represent the inversion results, and the red lines represent the true
values of the model. To compare the inversion results of different
methods more intuitively, Fig. 9 presents the mean relative errors
(MRE) of Young's modulus, Poisson's ratio, and density under
different inversion methods and noise conditions.

The comparison in Fig. 6(a)e(c) demonstrates that the inversion
method introduced can reliably and efficiently estimate Young's
modulus, Poisson's ratio, and density values from seismic data.
Although the inversion accuracy decreases with increasing noise,
reasonable estimations of the approximate model values remain
achievable. Comparing Figs. 6 and 7, the inversion accuracy in Fig. 7,
based on the approximate formula for indirect inversion, is lower
than that of Fig. 6, especially between 1.8 s and 2.0 s. Comparing our
proposed method with conventional iterative algorithms for joint
PP-PS inversion, as shown in Figs. 6 and 8, reveals that although the
accuracy of iterative algorithms in noise-free environments closely
aligns with this study's method, they fall short in terms of density
inversion accuracy. We attribute the improved density inversion
precision to the incorporation of random Gaussian variations into
the density parameter. Under noisy conditions, the inversion per-
formance of the method introduced is significantly superior to that
of iterative algorithms, as supported by the data on average relative
errors. Thus, test results from single well data indicate that the
inversion accuracy for Young's modulus, Poisson's ratio, and den-
sity, using the method proposed in this study with a new exact
solution derived from the precise Zoeppritz equation, exceeds
traditional methods, yielding superior results.

To evaluate the superiority of the IQPSO algorithm proposed in
this study, we conducted tests using noise-free synthetic seismic
data as an example. Fig. 10(a) presents the fitness value curves for
different algorithms as the number of iterations increases. Fig.10(b)
displays the fitness values across different iteration counts, given
the same size for the initial population. The x-axis represents the
number of iterations, and the y-axis denotes the fitness value.
Fig. 10(c) compares the inversion results using the PSO algorithm
and IQPSO algorithm on noise-free synthetic seismic records.
Fig. 10(a) reveals that the IQPSO algorithm secured the lowest
fitness values, with a noticeable stepwise reduction in fitness. It is
important to note that the parameters set for computation using
e; (c)e(d) PP and PS wave angles gather with added random noise with noise S/N ¼ 5;



Fig. 6. Inversion results (the proposed method, PP and PS joint direct inversion). Blue
line indicates inversion result and red line indicates true model data. E is the Young's
modulus data; s is the Poisson's ratio; r is the density. (a) Noise free; (b) S/N ¼ 5; (c) S/
N ¼ 2.

Fig. 7. Inversion results (PP wave inversion based on the approximate formula, indirect
inversion). Blue line indicates inversion result and red line indicates true model data. E
is the Young's modulus data; s is the Poisson's ratio; r is the density. (a) Noise free; (b)
S/N ¼ 5; (c) S/N ¼ 2.N
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the PSO and IQPSO algorithms are identical, with the iteration
count(NI) set to 800. The population size is set to 200, and the
iteration range is defined as ±30% of the true value. In the PSO al-
gorithm, the self-learning factor (c1) is set to 2, the social learning
factor (c2) is set to 2, and the inertia weight adaptively changes
from 0.9 to 0.4, the adaptive change formula is u ¼ umax �
½ðumax � uminÞ $iter�=NI,where iter represents the current number
of iterations, and NI is the total number of iterations. This
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commendable performance is attributed to the incorporation of
Gaussian mutations into the density term, which lowered the
fitness value and improved inversion precision. Analyzing Fig. 10(b)
reveals that while the IQPSO algorithm initially underperformed
compared to the QPSO algorithm, it successfully escaped local
minima and achieve global optimization as the iteration count
increased.



Fig. 8. Inversion results (PP and PS joint inversion by the linear direct inversion
method). Blue line indicates inversion result and red line indicates true model data, the
black dashed line represents the initial data. E is the Young's modulus data; s is the
Poisson's ratio; r is the density. (a) Noise free; (b) S/N ¼ 5; (c) S/N ¼ 2.

Fig. 9. Mean relative error. (a) TheYoung's modulus inversion results; (b) the Poisson's
ratio inversion results; (c) the density inversion results.
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4. Testing with field data

To evaluate the application effectiveness of the PP-PS joint
inversion method based on the new accurate solution form of the
exact Zoppritz equation on field data, we excerpted some open
seismic data for testing. The open data was sourced from the Volve
oil field in the Norwegian North Sea, with the Hugin formation
being themain reservoir of interest. The field data is available in the
679
Equinor dataset. The data was subjected to a range of standard
processing steps, including amplitude compensation and adjust-
ment, deconvolution, noise suppression, NMO correction,



Fig. 10. Comparison of inversion efficiency of IQPSO and PSO, taking noise-free syn-
thetic seismic data as an example. (a) Convergence curves of different algorithms; (b)
fitness values of different algorithms; (c) black line is the inversion result by PSO, the
red line is the inversion result by IQPSO.
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suppression of interbed multiples, and pre-stack time migration.
The pre-stack seismic data was time-matched, with PS wave
seismic data represented in PP wave time. To conveniently test the
reliability of the proposed method, we selected a portion of the
field data for testing. Fig. 11(a) and (b) display the stack profiles of
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the test area, with Fig. 11(a) representing the PP wave stack profile
and Fig.11(b) representing the PSwave stack profile. The black lines
in the images mark the positions of well in the test area.

Angle stack data from the work area was extracted for testing at
angles of 5�, 14�, 23�, 32�, and 41�, and phase seismic wavelet were
extracted from the wells for inversion. Fig. 12 shows the inversion
results for Young's modulus, Poisson's ratio, and density using the
method proposed in this study. Fig. 13 shows the PP wave inversion
results for Young's modulus, Poisson's ratio, and density data with
traditional iterative algorithms. The black line in Fig. 13 represents
the information of the filteredwell log curve. To better demonstrate
the inversion effect, Fig. 14 provides the inversion curves for the
seismic traces at the well locations. The blue lines in Fig. 14
represent the well log values, and the red lines represent the
inversion results using the method proposed in this paper.
Comparing Figs. 12 and 13, the inversion results of the method
proposed in this paper have a higher lateral resolution than those of
iterative algorithms, offering clearer delineation of target layers
and better inversion effects. According to the core sampling results
disclosed in the Equinor dataset, the main target layer in the test
area is the Hugin formation sandstone reservoir (2600 ms), and the
inversion results clearly show the low-value anomaly of this layer.

Moreover, a comparison with well logs reveals that the inver-
sion outcomes from the proposed method, despite exhibiting some
discrepancies, generally align with the logging curve trends. This
alignment provides interpreters with a reliable indication of the
formation's Young's modulus and Poisson's ratio. Therefore, in
practical field applications, this method can offer theoretical
guidance for horizontal well placement and help identify approx-
imate location of oil and gas reservoirs, thereby reducing explora-
tion risks and increasing the success rate of drilling.

5. Discussion

Currently, Young's modulus is primarily obtained through
approximate formula inversion or indirect calculation of elastic
parameters, which often fails to meet the accuracy required for
industrial applications. To address this issue, this paper proposes a
pre-stack AVO inversion method based on the exact Zoeppritz
equation to invert Young's modulus, Poisson's ratio, and density
directly and simultaneously. Unlike other methods relying on
approximate formulas, this approach re-derives exact solution of
the Zoeppritz equation as the forward operator, effectively avoiding
the impact of assumptions such as small incidence angles and low
formation contrast inherent to approximate formulas, thereby
enhancing inversion accuracy. Considering the complex form of the
exact Zoeppritz equation, we have adopted the exact solution form
of the Zoeppritz equation provided by Aki-Richards, which sim-
plifies the forward operator while maintaining the same accuracy
as the precise Zoeppritz equation. Additionally, this paper employs
a PP-PS wave joint inversion strategy, which, by incorporating
shear wave seismic information as opposed to traditional PP wave
inversion, can reduce inversion uncertainty. This represents an
advancement over the work of other scholars.

Considering the nonlinearity of the constructed inversion
objective function, this paper introduces and improves the quan-
tum particle swarm optimization, proposing a hybrid optimization
quantum particle swarm optimization named IQPSO. The improved
algorithm demonstrates significantly higher accuracy in inversion
results for nonlinear seismic inversion problems compared to
traditional gradient-based iterative algorithms. In nonlinear
inversion algorithms, conventional nonlinear algorithms are highly
dependent on the initial model and require extensive formula
derivation for obtaining derivatives and Jacobian matrices. In
contrast, intelligent optimization algorithms based on random



Fig. 11. Stack seismic profile. Black line indicates the location of well. (a) PP wave; (b) PS wave.

Fig. 12. Inversion results section of the proposed method. The black line is the well log
curves after sparseness.

Fig. 13. PP wave inversion results section of the Aki-Richards approximation formula
method. The black line is the well log curves after sparseness.
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Fig. 14. Comparison of the well curve in the time domain and inverted result at the
well location. Blue line indicates the well curves and red line indicates the inversion
results of the proposed method. E is the Young's modulus data; s is the Poisson's ratio;
r is the density.
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search only need a specified search range and are less dependent on
the initial model. However, the drawback of these algorithms is that
they require significant computational power and a substantial
amount of time. Nonetheless, with the continuous improvement in
computer processing capabilities, especially the enhancement of
multicore parallel processing, this limitation should be mitigated.
Notably, our method addresses cumulative errors from the indirect
calculation of Young's modulus and Poisson's ratio, offering theo-
retical guidance for identifying sweet spots in shale reservoirs and
deploying horizontal hydraulic fracturing wells.

6. Conclusion

Indirect inversion of Young's modulus introduces cumulative
errors, reducing inversion accuracy. This paper introduces the exact
solution form of the Zoeppritz equation and re-derives it in terms of
Young's modulus, Poisson's ratio, and density. Within the Bayesian
framework, we developed a joint PP-PS waves inversion process for
Young's modulus, Poisson's ratio, and density. Additionally, this
paper improves quantum particle swarm optimization algorithm
for inversion. The inversion results of both synthetic data and actual
data show that the method proposed in this paper is superior to the
iterative algorithm in terms of inversion accuracy. Specifically,
synthetic data illustrate that the targeted introduction of Gaussian
mutation strategies in the inversion of density terms enhances the
inversion effect of density items, confirming the feasibility and
effectiveness of the method proposed in this paper.

Furthermore, in the discussion section, we also address the
shortcomings of applying intelligent optimization algorithms,
which are issues that need to be directly confronted in future
research on such algorithms. In summary, the joint PP-PS wave
inversion of Young's modulus, Poisson's ratio, and density based on
the exact solution of the Zoeppritz equation, is both feasible and
valuable for practical application.
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