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a b s t r a c t

To reduce the spatial simulation error generated by the finite difference method, previous researchers
compute the optimal finite-difference weights always by minimizing the error of spatial dispersion
relation. However, we prove that the spatial simulation error of the finite difference method is associated
with the dot product of the spatial dispersion relation of the finite-difference weights and the spectrum
of the seismic wavefield. Based on the dot product relation, we construct a L2 norm cost function to
minimize spatial simulation error. For solving this optimization problem, the seismic wavefield infor-
mation in wavenumber region is necessary. Nevertheless, the seismic wavefield is generally obtained by
costly forward modeling techniques. To reduce the computational cost, we substitute the spectrum of the
seismic wavelet for the spectrum of the seismic wavefield, as the seismic wavelet plays a key role in
determining the seismic wavefield. In solving the optimization problem, we design an exhaustive search
method to obtain the solution of the L2 norm optimization problem. After solving the optimization
problem, we are able to achieve the finite-difference weights that minimize spatial simulation error. In
theoretical error analyses, the finite-difference weights from the proposed method can output more
accurate simulation results compared to those from previous optimization algorithms. Furthermore, we
validate our method through numerical tests with synthetic models, which encompass homogenous/
inhomogeneous media as well as isotropic and anisotropic media.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The finite-difference (FD) method has been a widely employed
technique for numerical simulations of seismic wave propagation.
The popularity of the FD method is primarily due to its low
computational cost and straightforward implementation (Alterman
et al., 1968; Kelly et al., 1976). However, the inherent errors of this
simulation technique are inevitable due to the omission of the
higher-order infinitesimal term and truncation error term during
the derivation of the FD scheme (Alford et al., 1974; Dablain, 1986).
These errors can be divided into spatial simulation error and tem-
poral simulation error. To minimize the spatial simulation error,
choosing FD weights with broad bandwidth can be considered, for
which the FD scheme functions exactly (Holberg, 1987; Kindelan
et al., 1990; Zhou and Greenhalgh, 1992).
.

y Elsevier B.V. on behalf of KeAi Co
Many efforts have beenmade to compute the FDweights. One of
the common ways is using optimization methods, with different
norms, including the L∞ norm (Holberg, 1987; Kindelan et al., 1990;
Zhang and Yao, 2013a, 2013b; Yang et al., 2017a, 2017b; He et al.,
2019; Koene and Robertsson, 2020; Liu, 2020a), the L2 norm
(Wang and Wu, 2002; Etgen, 2007; Liu, 2013, 2014; Wang et al.,
2014; Ren and Liu, 2015; Yong et al., 2017) and the L1 norm (Miao
and Zhang, 2020). Another strategy for computing FD weights is
to adopt a specific window function to truncate the pseudospectra
of the wavefield to compute the FD weights (Zhou and Greenhalgh,
1992; Igel et al., 1995; Shao et al., 2003; Xiao et al., 2006; Chu et al.,
2009; Chu and Stoffa, 2012).

For numerical modeling, the ideal FD scheme requires FD
weights that generate no error across all frequencies. In simpler
terms, FD weights should preserve the dispersion relation without
dispersion error across the entire wavenumber spectrum. Although
geophysicists have not yet discovered such perfect FDweights, they
have proposed two criteria as a means to approach it. One is that FD
weights have as a wide bandwidth as possible within a given
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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dispersion error limitation, and the other is that FD weights have as
small a low-wavenumber dispersion error amplitude as possible
within a given bandwidth (Koene and Robertsson, 2020).

Based on the first criterion, the Remez exchange algorithm
(REA) (He et al., 2019; Koene and Robertsson, 2020; Remez, 1934;
McClellan et al., 1973) produces the FD weights with the broadest
bandwidth among all these methods. This characteristic can be
attributed to its equiripple property. When evaluating existing
methods according to the second criterion, the Alternating direc-
tion multiplier method (ADMM) with L1 norm optimization prob-
lem (Miao and Zhang, 2020) is an optimal choice. That is because
the ADMM's solution has the least low-wavenumber dispersion
error.

In the practical test, researchers found some interesting obser-
vations. In numerical modeling, when the energy of the seismic
wavefield concentrates in the high wavenumber region, FD weights
fromREA output simulation result with less spatial simulation error
than other optimization algorithms (He et al., 2019). Conversely, FD
weights from ADMM can provide more accurate wavefield records
than REA when the energy of the seismic wavefield tends towards
the low-wavenumber region (Miao and Zhang, 2020). These phe-
nomena indicate that when the energy of the seismic wavefield
changes, it is difficult for an optimization method to consistently
output modeling results with the least spatial simulation error.

In this paper, we proved that the spatial simulation error is a dot
product of the spatial dispersion relation with the spectrum of the
seismic wavefield. The previous methods considered minimizing
the error of spatial dispersion relation, not the spatial simulation
error, thus, they can't consistently simulate accurate seismic
wavefield. We then carried out a test to verify this conclusion using
REA and the Taylor expansion method in the space domain (TES).
For minimizing spatial the simulation error, we formulated an L2
norm optimization problem based on the dot product of the spatial
dispersion relationwith the spectrum of the seismic wavefield, and
used an exhaustive search method to solve this problem. We used a
sampling approximation method (SAM) to calculate the FD weights
in this paper. This method can provide more selections in FD
weights than other optimization algorithms. The sampling points
are special M wavenumbers proposed by Peng et al. (2023). By
solving this L2 norm optimization problem, we can obtain the
optimal FD weights. To assess the effectiveness of the new FD
weights, we compared themwith the weights obtained via TES and
REA across both homogeneous and inhomogeneous media
seismograms.
2. Theory

2.1. Spatial simulation error

In a square grid system, a 2Mth-order discretization of the
second spatial derivative can be expressed as (Levander, 1988;
Fornberg, 1995; Liu, 2020b)

v2uðxÞ
vx2

z
1
h2

(
c0uðxÞþ

XM
m¼1

cm½uðxþmhÞþuðx�mhÞ�
)

(1)

where the uðxÞ is scalar pressure wavefield, h is grid point spacing,
c0 and cm are FD weights. According to the plane wave theory, the
wavefiled uðxþmhÞ can be expressed as

uðxþmhÞ¼u0e
ikðxþmhÞ (2)

where e represents the natural constant, u0 is a constant value for
wavefield amplitude. Substituting Eq. (2) into Eq. (1), we can
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transform the spatial domain FD operator (Eq. (1)) into the wave-
number domain,

�k2h2UðkÞzUðkÞ
"
c0 þ2

XM
m¼1

cm cosðmkhÞ
#

(3)

where the U(k) represents the spectrum of the seismic wavefield

u(x). When k ¼ 0, the c0 ¼ � 2
PM

m¼1cm. According to this, Eq. (3)
can be rewritten as

�ðkhÞ2UðkÞzUðkÞ2
XM
m¼1

cm½cosðmkhÞ�1� (4)

Eq. (4) can be abbreviated to

BaUðkÞzUðkÞBn (5)

where the Ba is the real or accurate wavenumber, and Ba
represents � ðkhÞ2; the Bn is the numerical wavenumber, and Bn
represents

PM
m¼1cm½cosðmkhÞ � 1�. Thus, the spatial simulation

error generated from spatial derivative can be derived by

E¼
ðkmax

0

�
Bn
Ba

�1
�
UðkÞdk¼

ðkmax

0
Bðcm; kÞUðkÞdk (6)

where the E denotes as the spatial simulation error between the
precision wavefield and the simulated wavefield, neglecting tem-
poral error, the Bðcm; kÞ represents the relative spatial dispersion
relation, kmax is the maximumwavenumber. kh ranges from 0 to p
because the maximal kh is on par with p according to the Nyquist
theorem. Thus the kmax is equal to p

h. Eq. (6) can be rewritten as

E¼
ðp

h

0
Bðcm; kÞUðkÞdk (7)

Theoretically, we should minimize E to optimize the FD weights
to reduce simulation error. However, in previous cases, researchers
focused on minimizing Bðcm; kÞ, not EðkÞ, to obtain optimized FD
weights, overlooking the influence of the wavefield UðkÞ. Conse-
quently, in some simulation experiments, optimized FD weights
lead to even larger spatial simulation errors.

To verify the previous conclusion regarding spatial simulation
error, we employed the Remez exchange method and the Taylor
expansion method for testing. The Remez exchange method is a
widely used algorithm to compute FDweights proposed by He et al.
(2019) for reducing spatial simulation error. The Taylor expansion
method is a convolution method used to compute FD weights. The

relative spatial dispersion of REA and TES is computed by
�
Bn
Ba

� 1
�
,

as shown in Fig. 1. When the dominant frequency of the Ricker
wavelet is 40 Hz, h is 5 m, t is 0.1 ms, velocity is 2000 m/s, the
spectrum of the 1D seismic wavefield (U) is shown in Fig. 2. Ac-
cording to Eq. (7), the spatial simulation error (E) is shown in Fig. 3.
It was observed that the spatial simulation error of REA was larger
than that of TES. The optimized FD weights didn't reduce spatial
simulation error because they were obtained by minimizing
Bðcm; kÞ not EðkÞ.
2.2. Minimizing spatial simulation error E

In previous section, we have proven that minimizing the error of
the dispersion relation Bðcm; kÞ is not the optimal way to reduce the
spatial simulation error. Thus, we should minimize the spatial
simulation error directly. Minimizing the spatial simulation error is



Fig. 1. A comparison of the relative spatial dispersion curves of REA and TES FD
weights.

Fig. 2. The spectrum of 1D seismic wavefield in wavenumber domain.

Fig. 3. Spatial simulation error of REA and TES. The spatial simulation error is
computed based on Eq. (7), which is the dot product of the relative spatial dispersion
curves (Bðcm; kÞ) with the spectrum of the 1D seismic wavefield (UðkÞ).

Input parameter: M, fm; vave;h;t; t;
Compute wðtÞ, wðtÞ ¼ ricker waveletðfm;t; tÞ
Compute Wðf Þ, Wðf Þ ¼ fft½wðtÞ�
Compute UwðkÞ, UwðkÞ ¼ 2ph

vave
Wðf Þ iteration

1. update the cm , cm ¼ SAMðMÞ
2. update the E, E ¼ BðcÞUw

Output: cm
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a classical optimal problem involving two variables, Bðcm; kÞ and
UðkÞ. UðkÞ is the seismic wavefield and cannot be equal to 0. In an
ideal situation, when Bðcm; kÞ is equal to 0, the simulation error is
also equal to 0. However, in practical computations, achieving Bðcm;
kÞ equal to 0 was difficult. Based on Eq. (7), we constructed an
optimization problem for the global minimum,

L ¼
����
ðp

h

0
Bðcm; kÞUðkÞdk

����2
2

(8)

UðkÞ is the spectrum of the seismic wavefield. Iteratively updating
the UðkÞ implies performing multiple forward modeling. Even with
the fastest forward simulation algorithms, the computational costs
remain unacceptable. In practical numerical modeling, the spec-
trum of the seismic wavelet is mainly determined by the spectrum
of the seismic wavefield. To solve this optimization problem, we
replaced the spectrum of the seismic wavefield UðkÞ with the
spectrum of seismic wavelet UwðkÞ. Therefore, when simulation
parameters are determined, the UwðkÞ becomes a known vector not
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a variable. Thus the new optimization problem can be rewritten as

L ¼
����
ðp

h

0
Bðcm; kÞUwðkÞdk

����2
2

(9)

We used the exhaustion method to solving the optimization
problem. The specific algorithmworkflow is shown in Algorithm 1.

Algorithm 1. The workflow of minimizing E
In the algorithm, ricker_wavelet represents a computer program
that generates a time-series seismic wavelet based on parameters. t
is the time step, t is the propagation time, and fm represents the
dominant frequency of the wavelet. The “fft” in Algorithm 1 implies
a Fourier transform program. We transformed the spectrum of
seismic wavelet from the frequency domain to the wavenumber
domain using 2ph

vave
Wðf Þ, vave represents the estimated average ve-

locity based on the velocity model and propagation time.
We used the sampling approximating method (SAM) to

compute Bðcm; kÞ, because SAM can provide more options of FD
weights compared to traditional optimization algorithms like
Least-squares method (LSM) (Liu (2013), REA and ADMM in the
selection of Bðcm;kÞ.

2.3. The sampling approximating method

For the sampling approximating method, the most important
element is the sampling. We adopted interesting special wave-
numbers proposed by Peng et al. (2023) as the sampling. These
wavenumbers can be expressed as



Fig. 4. A comparison of the relative spatial dispersion cuves of REA, SAM and TES FD
weights.

Fig. 5. A comparison of the relative spatial dispersion cuves of REA, new method and
TES FD weights.
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b¼bi � p (10)

where b; bj ¼ kjhðj¼ 1;2;3;…;MÞ are denoted as the special M

wavenumbers in Peng et al. (2023), bj are mutually distinct, bi are
initial wavenumbers obtained by optimization algorithms, like REA,
LSM and ADMM (Peng et al., 2023), and p is a positive value. By
substituting the specialMwavenumbers into the spatial dispersion
relation Bðcm; kÞ, we can express the resulting linear system of
equations as follows:

0 ¼
2
PM
m¼1

cm
�
cos
�
mbj

	� 1



�b2j
� 1 ðj ¼ 1;2;3…;MÞ (11)

The expansion of Eq. (11) can be expressed as Yang et al. (2017a,
2017b).

������������������������

cosð1b1Þ � 1
b21

cosð2b1Þ � 1
b21

: : :
cosðMb1Þ � 1

b21
cosð1b2Þ � 1

b22

cosð2b2Þ � 1
b22

: : :
cosðMb2Þ � 1

b22
: : : : : :

: : : : : :

: : : : : :

cosð1bMÞ � 1
b2M

cosð2bMÞ � 1
b2M

: : :
cosðMbMÞ � 1

b2M

������������������������

�

������������

c1
c2
:
:
:
cM

������������
¼

������������

�1
�1
:
:
:
�1

������������
(12)

Eq. (12) can be rewritten as

AðbÞc¼d (13)

where A2RM�M. There is an interesting fact regarding the rank of
A. If the rank of A and the rank of the augmented matrix (A d) are
both equal toM, a linear system of equations (Eq. (13)) has only one
solution according to linear algebra theory. Thus, a set of special M
wavenumbers can only compute one set of FD weights using the
SAM. The SAM solution is of an analytical nature. Unlike the solu-
tions of traditional optimization algorithms (REA, LSM, ADMM),
they are influenced by the initial parameters or the number of it-
erations. The FD weights of SAM can be obtained using the
formulation,

c ¼ A�1ðbÞd (14)

If we use traditional optimization algorithms to calculate FD
weights, we can only obtain one set of FD weights under a fixed
error tolerance, thus having only one Bðcm; kÞ to choose from.
However, in Eq. (14), because sampling point b is obtained by b ¼
bi � p, we can obtain different sets of sampling points by adjusting
bi and p. This adjustment operation allows us to compute multiple
sets of FD weights under a fixed error tolerance using the SAM.
Having multiple sets of FD weights under fixed error tolerance
means that SAM can obtain multiple Bðcm; kÞ within the same
condition. The adjusting operation of bi and p is as follows: when bi

increases, p increases, and when bi decreases, p decreases. The
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stability of the SAM is discussed in the Appendix.

3. Theoretical error analyses

In this section, we presented two analyses. The first is the
dispersion relation analysis with the objective of substantiating
that the SAM is capable of computing multiple sets of FD weights in
the fixed error tolerance. The second is the performance analysis of
generating the spatial simulation error aimed at illustrating that
the new method yields the least possible spatial simulation error.
we compared three methods, REA (He et al., 2019), TES, and the
proposed method.

Three sets of FD weights were computed for the same error
tolerance, as shown in Fig. 4. In Fig. 4, each curve represents a set of
FD weights. It can be observed that the FD weights from REA pro-
vide the broadest bandwidth under the same error tolerance,
covering approximately 10.87% more wavenumber region than the
SAM (1), as shown in Fig. 4. It is notable that REA and TES can only



Table 1
The FD weights from different methods in Figs. 4 and 5.

REA TES SAM(1) SAM(2) SAM(2) New method

1.912412497025990 1.777777777784810 1.864517970221300 1.880668867640410 1.885668321928440 1.854430786977060
�0.417184277546726 �0.311111111114948 �0.376311324915703 �0.389719458881255 �0.393949481583229 �0.368142207009117
0.146712622154826 0.075420875422329 0.115572189232860 0.125288699838556 0.128459492669186 0.109912375118199
�0.058492929938945 �0.017676767677177 �0.037600700228116 �0.043613618140840 �0.045682172944097 �0.034334479820169
0.023249417163344 0.003480963481052 0.011207631860865 0.014257228305223 0.015390711103540 0.009705908143951
�0.008430453541392 �0.000518000518014 �0.002730864268395 �0.003908072932626 �0.004393300147087 �0.002218964665582
0.002456117364094 0.000050742907887 0.000468683302011 0.000770819789720 0.000911505469580 0.000354711747233
�0.000412354204683 �0.000002428127428 �0.000041505840026 �0.000079402533614 �0.000099439779392 �0.000029179832109

Fig. 6. Spatial simulation error of REA, new method and TES. The spatial simulation
error is computed based on Eq. (7), which is dot product of the relative spatial
dispersion curves (Bðcm; kÞ) with spectrum of 1D seismic wavefield (UðkÞ).
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output one dispersion relation curve; however, SAM can output
numerous dispersion relation curves (we only show three curves)
as shown in Fig. 4. This illustrates that SAM can provide more
choices of FD weights for minimizing E than conventional optimi-
zation methods. The FD weights used to plot the curves are pre-
sented in Table 1.

Next, we conducted a spatial simulation error evaluation test on
the new method using experimental parameters identical to those
used in previous spatial simulation error evaluations. According to
these experimental parameters, the FD weights from the new
method were obtained using Algorithm 1. The results for spatial
dispersion relation (B) and spatial simulation error (E) are shown in
Figs. 5 and 6. From Fig. 6, we observe that the new method effec-
tively reduces the spatial simulation error E compared with the REA
and TES methods. The FD weights involved in plotting the curves
are listed in Table 1.
Table 2
The FD weights from different methods in homogeneous model simulation.

REA TES

1.912412497025990 1.777777777784810
�0.417184277546726 �0.311111111114948
0.146712622154826 0.075420875422329
�0.058492929938945 �0.017676767677177
0.023249417163344 0.003480963481052
�0.008430453541392 �0.000518000518014
0.002456117364094 0.000050742907887
�0.000412354204683 �0.000002428127428
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4. Numerical simulations

4.1. Homogeneous model simulation

We examined the effectiveness and validity of the new method
using a homogeneous model. The Ricker wavelet was used as the
source-time function in our numerical experiments. The dominant
frequency of the Ricker wavelet is 40 Hz. The homogeneous media
had a velocity of 2000 m/s for 1000�1000 grids with 5 m size, a
time step of 0.0001 s, and a model for 1 s. A small time step was
selected to avoid temporal simulation error. The source was injec-
ted at (2500m, 2500 m). In homogeneous modeling, we used 16-th
order FDweights to simulate the seismic snap. The FDweights were
computed by three methods, TES, REA and the new method. The
optimized FD weights were computed based on the same error
tolerance. The FD weights used in the modeling test are listed in
Table 2, and are displayed to 15 decimal places to accurately
demonstrate their numerical results.

Fig. 7 shows that the snap residual is the difference between the
analytical and FD solutions. The parameters of this homogeneous
model simulation are identical to those of the spatial simulation
error evaluation test. Furthermore, we observed that the snap re-
sidual of the new method was the smallest, followed by the TES
method, and the REA method had the largest snap residual. This
phenomenon is consistent with the observations from the spatial
simulation error evaluation test, demonstrating that minimizing E
is the most effective way to reduce spatial simulation error.

To test whether the new method is robust to parameter varia-
tions, we modified the spatial sampling interval to 6 m and set the
injection point of the wavelet to (3000 m, 3000 m), while keeping
other parameters constant. The residual of the snapshots was
shown in Fig. 8. Among the three methods, the snap residual of the
newmethod was the smallest. These two sets of model simulations
demonstrate that the new method can consistently output optimal
FD solutions in a homogeneous model, thereby indicating its
robustness.
4.2. Inhomogeneous model simulation

To validate the performance of the new method in a complex
New method (dx ¼ 5 m) New method (dx ¼ 6 m)

1.854430786977060 1.854557128963670
�0.368142207009117 �0.368242917960523
0.109912375118199 0.109980209087154
�0.034334479820169 �0.034372016707160
0.009705908143951 0.009722233478347
�0.002218964665582 �0.002224168345644
0.000354711747233 0.000355786209111
�0.000029179832109 �0.000029287070676



Fig. 7. A comparison of the residual snaps between the snapshots of FD scheme and
the snaps of analytical solution. (a), (b) and (c) are the residual snaps of REA, TES and
new method, respectively.

Fig. 8. Comparison of the residual snaps between the snapshots of FD scheme and the
snaps of analytical solution when the h changes to 6m. (a), (b) and (c) are the residual
snaps of REA, TES and new method, respectively.

W.-T. Peng and J.-P. Huang Petroleum Science 22 (2025) 1051e1061
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Fig. 9. The inhomogeneous velocity model, highlighting the injected source and record
point positions.
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geophysical model, we conducted tests using a modified Marmousi
model, as shown in Fig. 9. The model was discretized by a
1460�700 grid with a 5 m spatial sampling interval. The source
time function was a Ricker wavelet with a dominant frequency of
40 Hz, located at (680 m, 1 m), and a time step of 0.0001 s was used
to avoid the accumulation of temporal simulation error. Too large
time step leads to instability in the FD scheme (Berland et al., 2007;
Tarrass et al., 2011). The propagation was 1.2 s. A pseudo-spectral
solution was regarded as the reference solution, because it
offered the highest achievable accuracy in this experiment. Fig. 9
shows the recorded point located at (2500 m, 1500 m). All opti-
mization methods were conducted with the same error limitation
to simulate wave propagation in inhomogeneous modeling. The
optimal FD weights are listed in Table 3.

In this test, the spatial simulation error (E) of the optimized FD
weights (REA) is larger than that of TES. In our numerical test, for
Table 3
The FD weights from different methods in inhomogeneous model simulation.

REA TES

1.912412497025990 1.777777777784810
�0.417184277546726 �0.311111111114948
0.146712622154826 0.075420875422329
�0.058492929938945 �0.017676767677177
0.023249417163344 0.003480963481052
�0.008430453541392 �0.000518000518014
0.002456117364094 0.000050742907887
�0.000412354204683 �0.000002428127428

Fig. 10. A comparison of the waveform record located at (2500 m, 1500 m) from all FD w
comparison of the residual waveform.
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the optimized method, the residuals of waveform and snapshot are
larger than those of the TES, as shown in Figs. 10 and 11. These
observations indicate that the optimization algorithm cannot ach-
ieve accurate modeling results. Analyzing the residual waveform, as
illustrated in Fig. 10, the new method produced the smallest
waveform residual in the inhomogeneous model simulation. The
new method has a substantial improvement in reducing the re-
sidual of the snapshots compared to the TES and REA methods, as
shown in Fig. 11. This notable improvement can be attributed to the
fact that the newmethod can minimize the spatial simulation error
E.

We then tested the modified Marmousi model injected with a
50 Hz ricker wavelet. The residuals of the snapshot are shown in
Fig. 12. With the dominant frequency increase to 50 Hz, the spec-
trum of the seismic wavelet (UwðkÞ) changes. According to the
calculation in Algorithm 1, the FD weights of the new method
computed for these parameters (50 Hz) are the same as those
computed for the first set of parameters (40 Hz). In the second
inhomogeneous test, the new method showed a substantial
improvement in reducing the residual of the snapshots compared
with TES and REA, as shown in Fig. 12. In the inhomogeneous
model, the new method consistently provides superior perfor-
mance and robustness in suppressing residuals compared with
other computational strategies. When the dominant frequency of
the seismic wavelet changes to 50 Hz, the new FD weights
computed by the algorithm are identical to those at 40 Hz, as listed
in Table 3.

To verify the superiority of the new method in complex media,
we conducted a simulation test using vertical transversely isotropy
(VTI) media. The velocity model of VTI medium was a new Mar-
mousi model, where the number of grids is 369�188. The velocity
New method (fm ¼ 40 Hz) New method (fm ¼ 50 Hz)

1.853644482247890 1.853644482247890
�0.367512353218908 �0.367512353218908
0.109484475071185 0.109484475071185
�0.034094713508097 �0.034094713508097
0.009599914818463 0.009599914818463
�0.002184501573063 �0.002184501573063
0.000347427907264 0.000347427907264
�0.000028432973615 �0.000028432973615

eights computational methods. (a) Comparison of the original waveform, and (b) the



Fig. 11. A comparison of the residual snapshots between the snapshots of FD scheme
and the snapshots of the referenced solution. (a), (b) and (c) are the residual snapshots
of REA, TES and new method, respectively. The snapshot of referenced solution is
obtained by pseudo-spectral method.

Fig. 12. A comparison of the residual snapshots between the snapshots of FD scheme
and the snapshots of the referenced solution when the dominant frequency of wavelet
changes to 50 Hz. (a), (b) and (c) are the residual snapshots of REA, TES and new
method, respectively. The snapshot of referenced solution is obtained by pseudo-
spectral method.
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Fig. 13. The velocity model, ε and d model.

Fig. 14. A comparison of the residual snaps between the snaps of FD scheme and the
snaps of referenced solution. (a), (b) and (c) are the residual snaps of REA, TES and new
method, respectively. The snaps of referenced solution are obtained by pseudo-spectral
method.
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and anisotropic parameter (d and ε) models were illustrated in
Fig. 13, respectively. The spatial sampling interval was 5 m, the time
step was 0.0002 s, the propagation time was 0.45 s, and the
dominant frequency of the rickerwavelet was 30 Hz. In this test, the
FD weights were computed using the REA, TES and proposed
method.

Fig. 14 is a combination of residuals of the snapshots for all
methods. It can be clearly observed from Fig. 14 that the proposed
method exhibited the smallest residual. Notably, some residuals of
the snapshot appeared to resemble the model structure, which
were the error of pseudo-shear wave during the simulation process,
as shown in Fig. 14. It's worth mentioning that the error in the
pseudo-shear wave of the optimization method was smaller
compared to that of the new method. This is mainly due to the
spatial simulation error of the REA method, which is so significant
that it masks the error of the pseudo-shear wave. In our test, none
of the FD weights was able to effectively mitigate the error of the
pseudo-shear wave. How to use the FD weights to reduce the error
of the pseudo-shear wave required further research. As evident
from the residuals of the snapshots, the new method can signifi-
cantly enhance the accuracy of forward modeling in VTI media
compared with other methods.
5. Discussion

In this paper, our research focused solely on mitigating spatial
simulation error, not considered the temporal simulation error. For
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temporal error, previous studies have almost eliminated it. We
recommend employing a method known as the inverse time
dispersion transform (ITDT) (Koene et al., 2018) to address tem-
poral simulation error. ITDT can eliminate the temporal simulation
error, but it requires the computation of the Fourier transform and
inverse Fourier transform of the wavefield.

If we wanted to mitigate the temporal simulation error by
changing the FD weights, we could construct the cost function
based on the phase velocity. The phase velocity considers both the
temporal and spatial partial derivatives. Thus, optimizing the phase
velocity error can simultaneously mitigate the temporal and spatial
simulation errors.

As we derive the phase velocity, we noticed that the spatio-
temporal numerical error also has a relation with the spectrum of
the seismic wavefield. Therefore, our next objective was to utilize
the new method to simultaneously reduce both spatial and tem-
poral numerical errors.
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Tam and Webb (1993) proposed the dispersion-relation pre-
serving (PRD) method, which is a similar optimization method
based on the L2 norm function, specifically focusing on optimizing
the weights of high-order approximations for temporal derivatives.
Etemadsaeed et al. (2016) combined the Taylor expansion (TE)
method with PRD to investigate various grid combinations, aiming
to develop the most accurate finite-difference (FD) grid scheme.
The nature of the two papers is to minimize the deviation between
the numerical wavenumber and real wavenumber (for spatial
derivation), or minimize the deviation between the numerical
frequency and real frequency (for temporal derivation). Our
research seeks to minimize the dot product of the difference be-
tween numerical wavenumber and real wavenumber with the
spectrum of the seismic wavefield.
6. Conclusion

In this paper, we derived the specific process for calculating
spatial simulation error and found this error is determined by the
dot product of the spectrum of the seismic wavefield with the
spatial dispersion relation. However, in previous research, the FD
weights optimization method was only focused on minimizing the
error of dispersion relation. Consequently, in some scenarios,
optimized FD weights could lead to an increase in the simulation
error. Therefore, based on the objective of minimizing simulation
error, we designed an optimization problem to output FD weights.
Subsequent simulation experiments in the homogeneous and
inhomogeneous model tests demonstrated the effectiveness of the
new method in suppressing spatial simulation errors in various
scenarios.
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Appendix

The stability analysis

For a finite-difference scheme, the stability problem is impor-
tant, thus, we discussed the stability of new method in this section.
We could draw the stability of FD scheme by using the equation
(Liu, 2020) as follow:
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vmaxt

h
�
 
2

XintððMþ1Þ=2Þ

m¼1

c2m�1

!�1
2

(A.1)

where the vmax was the maximal velocity of the model, the t was
the time step. If the model parameters satisfy Eq. (A.1), the nu-
merical modeling can perform stably.

The maximum Courant-Friedrichs-Lewy (CFL) number Cmax can
be written as

Cmax ¼
 
2

XintððMþ1Þ=2Þ

m¼1

c2m�1

!�1
2

(A.2)

which is the same as that presented at Liu (2020). Based on Eq. (A.1)
and (A.2), when the vmaxt

h <Cmax, the simulation was stable. So, we
can used the Cmax to compare the stability of FD weights. As Fig. A.1
shows, both the optimization method and the new method had a
lower stability than the TES. This phenomenon was attributed to
the negative relation between stability and bandwidth, as shown in
Liu (2020). The FD weights from the new method used for stability
testing and those used for the numerical simulations in the ho-
mogeneous acoustic medium are the same set of FD weights.

Fig. A.1. A comparison of the stability for different FD weights. The Cmax is computed
based on Eq. (A.2).
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