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a b s t r a c t

Fan deltas are usually constructed through episodic flood event with debris flow transforming to hyper-
concentrated flow during sediments proceeding. However, the role of topography in controlling the flow
transformation and sediments aggradation has been less studied. This constrain studies of sediment
distribution and understanding of graded profile. For lake basin sequences, geomorphological control is
much stronger than lake level rise and fall. Under extreme conditions, sediments can still prograde when
the lake level rises. Therefore, describing the influence of geomorphology on the flow transformation and
stacking pattern of the lobes can provide a deeper understanding of the controlling factors of the lake
basin stratigraphy sequence. Xiligou lake (XLG) fan delta from Xisai Basin provides an optimal case for
addressing this issue. Three lobes developed on the XLG fan delta with significant differences in their
morphologies, architectures, lithofacies, sediment distributions and topographies. Through trenching,
drone photography, and satellite data, we analyzed the structure of the sediments and the distribution of
sedimentary facies. Based on the analysis of debris flow and hyper-concentrated flow deposits, two
transformation models corresponding to different topographies were established. Sediment unloading is
caused by a frictional reduction or a sudden momentum loss in the sediments flow's carrying capacity,
allowing the debris flow transforms to hyper-concentrated flow and then to stream flow during the
movement. The role of topography in controlling sediment flow transformation and sediment distri-
bution is clarified through forces analysis of sediment grain. The topographic gradient of the linear slope
is constant, so the direction of fluid movement is consistent with the topographic direction. Therefore,
sediment flows move on linear slope without collision with the bed and there is no sudden loss of
momentum. The gradual or sudden reduction in topographic gradient of concave slopes forces a constant
or sudden change in the direction of fluid movement, which facilitates the unloading of sediments and
the transformation of flow. The sudden change of topography forces unloading of viscous component,
and the non-viscous component pass over to form hyper-concentrated flow, often accompanied by
remobilized large gravels. The graded profile was an equilibrium between the dynamics and resistance of
sediment transport. Changes in lake level affect the graded profile by changing the elevation of sediment
transport, which is the total gravitational potential energy. The instantaneous graded profile and tem-
porary graded profile are different scales of equilibrium corresponding to hydrodynamic equilibrium and
depositional trend respectively. This study reveals the role of geomorphological dynamics in controlling
sedimentary body progradation, thus providing a new perspective on the analysis of lake basin stra-
tigraphy sequence.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
y Elsevier B.V. on behalf of KeAi Co
1. Introduction

Fan deltas, defined most commonly as an alluvial fan that has
prograded from an adjacent highland into a standing body of water,
either a lake or the sea (Holmes, 1945), are crucial landforms
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formed by episodic flood events which involve the transformation
of debris flow into hyper-concentrated flow as the sediments
progress (Postma,1990; Nemec,1990; Kataoka and Nakajo, 2004). It
also plays a significant role in sediment routing systems between
subaerial and subaqueous deposition (Prior and Bornhold, 1990;
Allen, 2008, 2017; Li et al., 2017a, 2017b; Yang et al., 2020). For
hybrid-event beds, clarifying the sediment flow transformation in
fan deltas can provide new understanding of trigger mechanisms of
deep-water turbidite systems (Fonnesu et al., 2018; Baas et al.,
2021b), especially in the context of the topography-controlling ef-
fect on sediment gravity flows (Tinterri et al., 2020; Shanmugam,
2020; Guo et al., 2021).

Fan delta is mainly composed of debris flow and hyper-
concentrated flow finally shifting to stream flow (Postma, 1990;
Nemec, 1990; Kataoka and Nakajo, 2004). The investigation on
debris flow and hyper-concentrated flow deposits has led to the
establishment of transformation models. Sohn et al. (1999) pro-
posed two models of debris flow transforming to hyper-
concentrated flow based on researches on an alluvial fan. One
model described a hyper-concentrated flow generated by the
dilution at the leading edge of a debris flow that entered a river
valley. And the other illustrated a debris flow preceding in advance
of a hyper-concentrated flow and streamflow. Both models led to
the same distribution with debris flow deposits at proximal, hyper-
concentrated flow in the middle, and stream flow at distal. A lot of
subaqueous models of gravity flows have been established due to
sediments distribution, but limited attention has been given to the
role of topography in fluid process (Pierson and Scott, 1985; Zavala,
2020; Kvale et al., 2020; Yang et al., 2020).

Transformations of sediment gravity flows, pertaining to tran-
sition between laminar and turbulent flow, is controlled by pa-
rameters such as sediment concentration, flow thickness and
velocity, as well as topographic slope gradient (Baas et al., 2009,
2011), which can be attributed to the interaction between topog-
raphy and flow with sediments exchanging. The controls of
topography on an alluvial-fan delta system have received
increasing attention: (1) Topography provide the principal driving
force of sediments transportation, and the competition between
driving force and resistance during transporting (Gao et al., 2019;
Hussain et al., 2020). (2) It controls the morphology of fan delta
through governs acceleration or deceleration and orientation of
sediments flow (Harvey et al., 2005). As long as shear stresses are
well above critical which can be maintained by enough steep slope,
the impact of water flux on fan morphology is much stronger than
grain size (Parker et al., 1998). (3) In the meantime, fan slope is
dependent on discharge and sediments illustrated by flume ex-
periments (Whipple et al., 1998; Milana and Ruzycki, 1999; Milana
and Tietze, 2002; Zhang et al., 2021), numerical models (Parker
et al., 1998; Geleynse et al., 2011; Nota et al., 2024), and field in-
vestigations (Bull, 1964; Gao et al., 2019, 2020). These findings
underscore the critical influence of topographic features in shaping
sedimentary processes and highlight the significance of detailed
topographic mapping in understanding sediment dynamics and
distribution.

Therefore, this paper will rely on satellite remote sensing and
UAV tilt photography to establish a topographic model. Charac-
terize the spatial distribution of lithofacies and hydrodynamic
changes of interpreted sediments flow based on sedimentary
structures showing on satellite and UAV images and field obser-
vations (Baas et al., 2021a, 2021b). From the perspective of force
analysis, moving simulation and stratigraphy, we will explain how
the topographic slope affects the fluid flow transformation process
and stacking pattern of the lobe.
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2. Geological backgrounds

2.1. Tectonic setting

XLG lake is located in Ulan County, Qinghai Province, in the
northwestern part of Qinghai-Tibet Plateau, about 100 km duewest
away Qinghai Lake. The lake surface is about 2934 m above sea
level, and the lake area is about 20 km2. XLG Lake is situated in the
narrow NWW-oriented Xisai Basin, in the eastern margin of the
Tsaidam Basin, which is a faulted basin confined by retrograde
faults between mountains on a thrusting body (Lv, 2018), with
several positive fault-cut blocks. A positive fault inclined to a dip of
30� due north develops at the root of the fan delta body.

2.2. Climate and hydrogeological conditions

The Dulan River and the Saishek River are two main recharge
rivers in the basin. The Saishek River originates in the Ulanbeyli and
Goerel Mountains in the north of the basin, with a total length of
45 km and a catchment area of about 965 km2. The source of the
Dulan River is located in Guanjiaozhigou and Goerel Gou in the
Tsakhano Depression, with a catchment area of about 501.25 km2.
The two rivers show a scattered flow after leaving the mountain
pass. Some of the river water is directly recharged to groundwater
by infiltration in the pre-mountain area, and at the alluvial fan. It
gushes out of the ground in the form of springs to form swamps and
spring streams, and finally all of them converge in the XLG Lake (Lv,
2018).

Wulan-Duran area is a typical semi-arid and alpine climate area
of the inland plateau, controlled by high-pressure westerly winds
and the influence of Mongolian-Siberian anticyclones, showing
typical continental climate characteristics, dry, low rainfall and
windy, with long and cold winters, short and cool summers, annual
solar radiation of 1577~1777 MJ/m2. Precipitation in the plains
ranges from 37.9 to 180.5 mm, concentrated in MayeSeptember.
The low temperature in January is �15 ~ �10 �C, the high in July is
9e19.3 �C, the lowest temperature is �39.2 �C, the highest tem-
perature is 33.9 �C, the daily difference is 12.6 �C, and the annual
difference is 23.9e29.7 �C, which is greater in the west than in the
east. The region is an arid area, with a humidity coefficient of
0.21e0.35, annual evaporation of 2049.6 mm, annual sunshine
hours of about 3100 h, and average daily sunshine hours up to
7e10 h throughout the year (Chen et al., 2016) (Fig. 1(d and e)).
Climate controls lake-level fluctuations through the balance be-
tween precipitation and evaporation (Uhrin and Sztan'o, 2012;
Woolway et al., 2020), which governs sediment supply and fan
morphology indirectly through weathering of source areas and
vegetation (Nelson et al., 2009; Evangelinos et al., 2017). Precipi-
tation and temperature in this region vary in cycles of about 10
years and annual rainfall is concentrated in summer and scarce in
winter (Fig. 1(d and e)), making XLG fan delta formed by inter-
mittent flooding.

2.3. Catchment and fan morphology

Reading and Richards (1994) classified fans as a point source and
a lineal (multipoint) source according to the different control of the
faults on the source of the fan. The "Y"-shaped fault developed in
the south Maoniu mountain of the XLG Lake, forming a single vent
between the fault blocks, which allows the source to emerge from
the outlet in a "point" pattern (Fig. 1(a)).

The sediments of the XLG fan delta are derived from two
catchments. Source area A in the east is mainly volcaniclastic rocks
of the Upper Ordovician, granodiorite and diorite of the Hercynian
and granite of the Indo-Chinese, with a maximum elevation of



Fig. 1. Geological setting of the XLG Fan delta. (a) Satellite image showing the study area and locations of measurements. (b) Regional geological map (modified from Qinghai
province geological map 2016). (c) Longitudinal topographies of different lobes. (d) Monthly variations in regional mean precipitation, mean temperature, mean daylight and mean
evaporation of the Wulan country (data from Shi and Xiao, 2003; Luo and Wang, 2017; Chen et al., 2016). (e) Yearly variations in regional mean precipitation and mean temperature
of the Wulan country (data from Luo and Wang, 2017).
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4155m above sea level, an area of 86.9 km2, and an average slope of
10.2�. Source area B in the west is dominated by volcaniclastic rocks
of the Upper Ordovician, and clastic rocks of the Upper Devonian
and Upper Neogene, containing abundant flesh-red granite con-
glomerates, with a maximum elevation of 3745 m above sea level,
an area of 22.5 km2 and an average slope of 4.3� (Fig. 1(a and b)).

Covering an area of about 48 km2, the XLG fan delta is the largest
one of fan systems along the basin margins, showing a symmetrical
fan shape with a center angle of 117.5�, a maximum radius of about
7.4 km, a maximumwidth of about 9.6 km, and an average slope of
1.6�. Contiguous alluvial systems have developed in the adjacent
areas, with several alluvial fans overlying the XLG fan delta in the
west part (Fig. 1(a)).

Three sedimentary lobes that had been recently active were
developed on the surface of the fan delta showing a lighter tone on
satellite images. The darker area is the product of oxidation over
long intermittent periods of deposition, while the lighter areas are
those currently active. The envelope of the still active region can
then be used as the boundary of the lobe (Blair and McPherson,
2009; Harvey, 2011; Bahrami et al., 2015). Their shapes, as well as
the development of the watercourses are significantly different.
DEM elevation data shows the differences in the longitudinal
topographic variations of the three areas. The slope of the lobe A is a
constant value of 1.64�. The slope of lobe B shifted gradually from
2.14� to 0.86� and finally to 0.43�. The slope of lobe C has two
1023
segments connected by a knickpoint, which is 1.8� and 0.18�

respectively (Fig. 1(aec)). The differences between the three slopes
are due to the uneven accumulation of different grain-size sedi-
ments. Each lobe carries different composition of sediments, with
different flow regimes and different spatial erosion or deposition. In
terms of angle of repose, it increases with increasing grain size
(Lane, 1953; Wu et al., 2017). Therefore, areas with steeper slopes
may have higher gravel content and larger grain sizes. Through the
analysis of facies and sediments distribution, the geomorphological
control on sedimentation will be revealed.

3. Data and methods

A field expedition was conducted to provide detailed profiles of
19 sites in total within the XLG fan delta. The studied locations are
mainly distributed along the cliff sections of the incised valley
range from 10 to 150 m in length and 1e2m in height. Additionally,
6 trenches, about 0.5 m high, were excavated to expose transverse
sections from the proximal to the distal fan (sections 14 to 19 in
Fig.1(a)) to better characterize the downslope and lateral variability
of architectures and facies of XLG fan delta. Typical samples were
collected for grain-size and grading analyses. A total of 17.74 m of
sedimentary logs were measured at a 10 cm resolution and corre-
lated to understand the spatial changes in the style of
sedimentation.
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The analysis of lithofacies and their associations, as well as the
accumulation probability curves of grain size, allowed for the ex-
amination of the transformation of flow regime. The plane distri-
bution of channels and bars were observed using satellite maps and
UAV flat tilt photography. Width of lobes, the width and number of
bars were characterized and measured. The topographic variations
of different lobe depositional areas were obtained through DEM
elevation data at a 30 m resolution downloaded from Geospatial
Data Cloud. Finally, equations and models were established to
discuss the controlling effect of topography on sediment distribu-
tion through the transformation of flow regime and energy, from
the perspective of morpho-dynamics, which is the interaction of
topography, flow regime, and consequential sedimentary facies.
4. Results

4.1. Facies and interpretation

4.1.1. Debris flow deposits

4.1.1.1. Description. Cohesive debris flow deposits are disorganized
cobble to boulder conglomerates with a maximum diameter of
70 cm, subrounded to rounded, poorly sorted. They are matrix
supported with clasts floating in coarse sands or fine gravels. In-
verse grading, with high dip angle clasts even uptight. And the dip
angle becomes smaller from bottom to top, which indicates a
rolling effect of bottom pebbles toweaken the friction from bed and
a dispersive pressure support for top cobbles (Table 1, D1). Non-
cohesive debris flow deposits lack sand deposits. They are disor-
ganized or weakly organized cobble to boulder conglomerates with
a mean diameter of 30 cm, clast supported, poorly to moderately
sorted. Clasts oriented in low dip angle, weakly imbricated, without
obvious grading. There would be outsized clast floating in finer
pebbles (Table 1, D2; Fig. 2(a)).
Table 1
Characteristics and interpretation of different kinds of sediment flow deposits.

Code Lithology Sedimentary structures

D1 Disorganized boulder to cobble
conglomerates, subrounded to rounded,
poorly sorted, matrix supported, coarse
sand to fine pebble matrix. In Fig. 2(aee).

Massive, structureless o
cobble or boulder floatin
dip angle, even upright.

D2 Disorganized or weakly oriented boulder to
cobble conglomerates, subrounded to
rounded, poorly to moderately sorted, clast
supported larger cobble, matrix supported
smaller cobble and pebble, outsized clast up
to 0.4 m. In Fig. 2(aee).

Massive, structureless o
grading, clast supported
oriented in low dip angl
smaller cobble and pebb
dip angle.

H1 Disorganized boulder to oriented pebble
and gravel conglomerates, subrounded to
rounded, poorly sorted, matrix supported,
coarse sand to fine gravel matrix, outsized
clast up to 0.3 m. In Fig. 2 (b).

Massive, normal grading
larger cobble oriented in
imbricated, coarse sand
no obvious structure.

H2 Oriented cobble to pebble conglomerates,
subrounded to rounded, well sorted, clast
supported, outsized clast up to 0.2 m. In
Fig. 2(c and d).

Massive, multiple norm
supported clasts oriente
and well imbricated, lac

H3 Stratified pebble to gravel conglomerates,
stratified coarse sand with pebble and
gravels, subrounded to rounded, well
sorted, clast supported, outsized clast up to
0.2 m. In Fig. 2(bef).

Stratified, normal gradin
and imbricated at the bo
aligned along lamina

S1/S2 Trough-shaped and sigmoidal-stratified, or
planar-shaped and cross-stratified, well-
organized, medium
to coarse sandstone with pebble to gravel
conglomerate, subrounded to rounded,
poorly to moderately sorted, clast-
supported. In Fig. 2(g and h).

Trough, planar and sigm
erosive bases, multiple b
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4.1.1.2. Interpretation. The mechanics of debris flows involve fric-
tion and momentum transfer between coarse-grained materials,
electrochemical reactions between fines, and physical reactions
between the fluid, sediment grains and the bed (Brenna et al.,
2020). The interpretation of debris flow deposits has been mainly
based on the viscoplastic flowmodel (Johnson, 1970, 1984) and the
inertial grain flow model (Takahashi, 1978, 1981). Both models
suggest that the deposition of a debris flow takes place by mass
freezingwhen the driving shear stress falls below the yield strength
of the viscoplastic material with disorganized clast fabrics or when
the dispersive pressure drops and the grains become frictionally
bound with preferred clast orientation (Enos, 1991; Lewis et al.,
1980), corresponding to cohesive and non-cohesive debris flows
(Lowe, 1979, 1982; Nemec and Steel, 1984). Some debris flows can
even exhibit turbulence and their deposits exhibit normal grading
(Lowe, 1982) and scour surfaces (Gao et al., 2019).
4.1.2. Hyper-concentrated flow deposits

4.1.2.1. Description. There are three types of hyper-concentrated
flow deposits. (1) Disorganized cobble to gravel conglomerates
and sands with a maximum diameter of 30 cm, subrounded to
rounded, poorly sorted, massive sand and fine gravels laying on top.
They are matrix supported or clast supported. Normal grading, with
oriented in low dip angle, weakly imbricated. Outsized clast may
show high dip angle even uptight (Table 1, H1; Fig. 2(b)). (2) Ori-
ented cobble to pebble conglomerates with a mean diameter of
15 cm, subrounded to rounded, well sorted, clast supported,
outsized clast up to 0.2 m. Multiple normal grading bedsets, with
bottom pebbles imbricated (Table 1, H2; Fig. 2(c and d)). (3) Strat-
ified pebble to gravel conglomerates, stratified coarse sand with
pebble and gravels, subrounded to rounded, well sorted, clast
supported, outsized clast up to 0.2 m. Normal grading, gravel ori-
ented and imbricated at the bottom, finer gravels aligned along
Depositional process

r inverse grading,
g in matrix, large

Cohesive debris flow, mass movement, clasts are
supported by buoyancy and dispersive pressures
(Johnson, 1970, 1984).

r weakly normal
larger cobble
e, matrix supported
le showed larger

Non-cohesive debris flow, mass movement and
traction, larger clasts are supported by shearing stress,
smaller clasts supported by buoyancy and dispersive
pressures (Lowe, 1979, 1982; Nemec and Steel, 1984).

, clast supported
low dip angle and

s are massive with

Hyper-concentrated flood flow, high energy, inertial
layers and traction, large pebble are dragged by
shearing stress, sands and gravels suspended by
turbulence (Chen and Zhang, 2015; Brenna et al., 2020).

al grading, clast
d in low dip angle
k sand deposits.

Hyper-concentrated flood flow, lower energy, high
turbulence, traction carpets deposits, shearing between
layers.

g, gravel oriented
ttom, finer gravels

Hyper-concentrated flood flow transforming to traction
current, waning traction carpets deposits, shearing
between layers.

oidal cross bedding,
edsets.

Stream flow, traction current, channel deposits or
swash deposits by wave.



Fig. 2. Typical sedimentary features of the XLG Fan delta deposits. (a) Cohesive debris flow deposits and non-cohesive debris flow deposits. (b) Hyper-concentrated flow deposits.
(c) Gravel bedforms formed by hyper-concentrated turbulent flow. (d) Frequently interbedded clean conglomerates with few matrices. (e) Distal debris flow channel. (f) Hyper-
concentrated flow progradation of inclined sheet-like layers. (g) Trough cross bedding formed by transitional stream flow from hyper-concentrated flow. (h) Swash cross-
bedded gravels and sands, indicating the wave effect on the sedimentation.

H.-W. Sun, S.-L. Li, P. Li et al. Petroleum Science 22 (2025) 1021e1040

1025



H.-W. Sun, S.-L. Li, P. Li et al. Petroleum Science 22 (2025) 1021e1040
lamina (Table 1, H3; Fig. 2(bef)).

4.1.2.2. Interpretation. “Hyper-concentrated flow”, proposed by
Beverage and Culbertson (1964), was defined as an intermediate-
type flow between stream-flow and debris-flow. Deposits include
dense inertial layers or carpets beneath dilute and turbulent flows
(Chen and Zhang, 2015; Brenna et al., 2020) (Fig. 2(b)), forming
sheet beds (Nemec and Muszynski, 1982) (Fig. 2(c)), from slightly
channelized, weak grading (Fig. 2(d)) (Wasson, 1977; Heward,
1978), to boldly channelized, normal grading (Steel, 1974)
(Fig. 2(b)), and even completely stratified (Fig. 2(f)). And because of
its high concentration and turbulence, it often carries large gravels
from early debris flow deposits downstream (Postma et al., 1988).

The stream flow of the XLG fan delta was transformed from the
hyper-concentrated flow and developed at the end of debris surg-
ing. Stream flow deposits here, shown on the trench, are massive,
thickly bedded and trough cross-bedding conglomerate-bearing
sands (Table 1 (S1, S2); Fig. 2(g and h)).

4.2. Facies distribution

There are four kinds of facies developed in three lobes, braided
bar, sheet-flooding bar mouth bar and sheet sand. Bar is defined as
the positive geomorphic elements including convex deposition
braided bar and residual of sheet flooding lobe cut by channels.
Braided bar is formed by braided rivers, clast supported, inverse
grading. Residual of sheet flooding lobe is usually well stratified,
but showing a coarsening upward in multiple bedsets, defined as
sheet-flooding bar in this study. The geometry of base level is
calculated based repose angles of different-diameter grains
(approximated by the coefficient of friction, Hjulstr€om, 1935) and
diameter exponential decreasing with distance proposed by
Sternberg (1875).

The topography of Lobe A shows a monoclinic character with no
obvious topographic changes, and the debris flows, hyper-
concentrated flow and streamflow, develop sequentially from
proximal to distal ends. In the proximal part of the lobe, at point X4,
the debris flow deposits have coarse gravels suspended in sandy or
fine gravelly matrix, and in the central part of the lobe, at point X10,
the gravels have orientated character with a low angular inclina-
tion, suggesting a transition from a cohesive debris flow to a non-
cohesive debris flow. The HCF (Hyper-concentrated flow) deposits
of Lobe A are predominantly an overlay of fining upward thin gravel
layers or small, trough-like, gravels (Fig. 3).

Lobe A exhibits a broom shape in plan, sequentially developing
debris flow channel, sheet-flooding bar which is dominated by
hyper-concentrated flow, braided bar, mouth bar and sheet sand
which is dominated by streamflow. There are regional differences
in the distribution of facies. In the western part, braided bars are
more developed, while sheet-flooding bars are more developed in
the eastern part. Maybe it's because the eastern part is closer to the
center of the lake than the western part (Fig. 1). The mouth bars are
more developed downstream of the sheet-flooding bars and rela-
tively less developed downstream of the braided bars. This may be
due to the fact that the development of the braided bar unloads a
large number of sediments, resulting in insufficient residual ma-
terial carried in the transport medium to form a sizeable mouth bar.
In contrast, the sheet-flooding bar unloads only the bed-loaded
material from the hyper-concentrated flow, so that most of its
suspended substance could unload distally enough to form amouth
bar (Fig. 3).

The topography of Lobe B is characterized by a gradual decrease
in slope, with the development of debris flow, hyper-concentrated
flow and streamflow from proximal to distal ends. The debris flow
sediments showmedium to coarse gravel suspended inmatrix both
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proximally and centrally, suggesting that the cohesive debris flow
extends further than in Lobe A. The hyper-concentrated flow sed-
iments of Lobe B show more remobilized large gravels and are
typified by frequent cross-cutting of medium and coarse gravels in
multiple trough-like interbedded laminations (Fig. 4). High pro-
portion non-cohesive debris flow suggests that, unlike Lobe A,
debris flows in Lobe B maybe suffer a forced diluting controlled by
topography, rather than sedimentary differentiation transforming
into hyper-concentrated flow.

Lobe B has a different proportion of facies development
compared to Lobe A. Sheet-flooding bars are significantly more
developed than braided bars, but both are less developed as mouth
bars are more developed than Lobe A (Fig. 4). This is mainly due to
less proximal unloading but more unloading at the distal. More-
over, the hyper-concentrated flow of Lobe B re-transported earlier
sediments, allowing debris flow deposits to be carried downstream,
increasing sediment supply at river mouth.

The topography of Lobe C has two sections, with one relatively
steep slope followed by one relatively gentle, and the debris flow,
hyper-concentrated flow and streamflow are developed sequen-
tially from proximal to distal end. The debris flow sediments are
mainly non-cohesive, gravels oriented at a low angle, with few
matrix and suspended gravels. The proportion of hyper-
concentrated flow is higher than debris flow at point X2. The
hyper-concentrated flow sediments of Lobe C contain more remo-
bilized large gravels and are typified by cross-cutting of medium
and fine gravels in multiple trough-like interbedded laminations.
At point X13, the stratification of the hyper-concentrated flow
sediments becomes less pronounced, with only partial occurrences
of small trough-interbedded laminations and thin gravel layers
(Fig. 5). This may be caused by the rapid unloading of the hyper-
concentrated flow sediments due to the abrupt change in topo-
graphic slope.

Compared with Lobe B, Lobe C has a higher proportion of sheet-
flooding bars developed, lacks of mouth bars deposits, and mainly
develops sheet sand (Fig. 5). This may be due to the abrupt change
in topography, which allowed massive unloading of sediments at
the knickpoint, resulting in insufficient supply of distal sediments
for the formation of large-scale mouth bars. Moreover, it is located
in a shallow water areawith strong wave action, so that small-scale
mouth bars were converted to sheet sand by wave action (Fig. 1).

4.3. Sedimentary parameters

In this part, based on satellite image and UAV planimetric tilt
photography, the width of lobes, the width of bars, and the number
of bars with distance were measured, and fitted relationships were
established respectively. Sediments flow types were classified ac-
cording to the lithofacies observed in the field profiles, with cor-
responding percentages calculated andmaximumgrain size of each
observed point measured.

4.3.1. Lobes and bars
The width of Lobe A showed a better linear relationship with

distance, while the width of bars showed a slowly increasing and
then rapidly decreasing trend with distance. The number of bars
behaves similarly, but at the position of 1000 m, the number is
unusually low (Fig. 6(a)). This may be due to the fact that after the
deposition of coarser particles, the finer remaining particles are in a
supercritical state at the prevailing water velocity, leading to a
reduction in deposition. The fitting curve of thewidth of Lobe A and
the width of bars shows concave down (Fig. 6(b)), indicating that
the effect of bars on the increase of the width of lobe A is greater at
smaller but less at larger width of bars. The reason is that the
greater the number of bars, the smaller the size at a given sediment



Fig. 3. Topography, sedimentary succession, and facies distribution of the lobe A.

H.-W. Sun, S.-L. Li, P. Li et al. Petroleum Science 22 (2025) 1021e1040
supply. A greater number of bars means more frequent river bi-
furcations. The channel bifurcation is the primary influence on the
widening of the lobe and the width of bars is the secondary.

The width of Lobe B shows a good exponential function with
distance. The width of bars shows a trend of slow increase followed
by rapid increase with distance. The number of bars shows a
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tendency to increase slowly and then decrease rapidly (Fig. 6(c)).
The width of Lobe B shows a linear relationship with the width of
the bars (Fig. 6(d)). This suggests that the width of Lobe B is mainly
controlled by the bifurcation of thewatercourse upstream, whereas
downstream it is mainly the width of the dam body that controls
the width of the lobe, illustrating the continued large-scale



Fig. 4. Topography, sedimentary succession, and facies distribution of the lobe B.
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accretion of the mouth bars at the distal end.
The width of Lobe C shows a better polynomial function rela-

tionship with the extension distance, indicating the widening rate
of the lobe is unstable. The number of bars shows a symmetrical
trend of increasing and then decreasing with distance (Fig. 6(e)).
The correlation between thewidth of Lobe C and either thewidth of
the bars or the number of bars is poor, suggesting an abrupt change
in topography as the lobe develops (Fig. 6(f)).

In conclusion, the variation of lobe's width is directly controlled
by the bifurcation of the channel. When the current is in a super-
critical flow state, its bifurcation is not accompanied by sediment
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unloading, while in a subcritical flow state, it is accompanied by
sediment unloading to form a bar, at which time the width of the
bar also influences the widening of the lobe to some extent. The
smoother and more continuous the fluid change, the better the
correlation between the two. Once there is a sudden change in the
topography, resulting in a sudden change in fluid velocity and
unloading, then the correlation between the two will become
worse. The width of the lobe and the width of the bars are fitted
with the degree of B > A > C, indicating that that the strength of the
influence of the topography on the lobe is C > A > B (Fig. 6).



Fig. 5. Topography, sedimentary succession, and facies distribution of the lobe C.
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4.3.2. Proportion of different sediment flows
Lobe A, B, and C have different proportions of debris flow and

HCF development due to the topography in which they were
developed. Lobe A has the highest proportion of debris flowand the
lowest proportion of hyper-concentrated flow, while Lobe B has the
lowest proportion of debris flow and the highest proportion of
hyper-concentrated flow (Fig. 7(a)). This suggests that Lobe A is the
least controlled by topography, and its hyper-concentrated flow
development mainly comes from flow dilution caused by flow
power decreasing. Lobe B and C, on the other hand, may come from
sudden topographic changes that lead to sediments unloading, thus
forcing the flow to shift to hyper-concentrated flow.

In addition, there are two anomalies in the maximum grain size
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of Lobe B and Lobe C, which are manifested as large gravels sus-
pended in fine gravels, assumed to be remobilized gravels. Other
than that, there is little difference in grain size among the three
lobes. And due to the sparse data, the grain size is not sufficient to
compare the transport capacity of the flows.
5. Discussions

5.1. Flow transformation

The fan delta develops debris flow deposit, hyper-concentrated
flow deposits and stream flow deposits sequentially from proximal
to distal. However, it does not mean that the debris flow is also



Fig. 6. Parameter fitting relationships for the development of lobes and depositional units.

Fig. 7. Statistics of sediment flows proportion (a) and gravels with maximum diameter (b).
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located in the tail when the fluid is moving. Sohn et al. (1999)
proposed two models for the transition of debris flows to hyper-
concentrated flow (Fig. 8). The former shifts to hyper-
concentrated flow due to dilution of the debris flow (Fig. 8(a and
b)), while the latter is due to stagnation of the debris flow deposits
(Fig. 8(c and d)). The dilution of the debris flow can be the addition
of an external body of water or the unloading of sediments due to a
decrease in dispersion pressure (Bagnold, 1954; Hampton, 1972;
Rodine and Johnson, 1976; Pierson, 1981; Pierson and Scott, 1985).
And there is a process of cohesive debris flow changing to non-
cohesive debris flow, which is manifested as matrix-supported
gravels changing to sub-horizontally aligned gravels (Rodine and
Johnson, 1976; Lowe, 1976; Postma et al., 1983) (Fig. 3, X10; Fig. 8
(b)). This makes the sediments well differentiated spatially. In the
latter, the viscous component of the debris flow unloads and the
trailing non-viscous component passes over to the front, forming
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the hyper-concentrated flow (Sohn et al., 1999; Schippa, 2020),
which is analogous to the result of regions V and VI in an experi-
mental simulation of a single-event triggered gravity flow carried
out by Manica and Schulz (2012), often accompanied by remobi-
lized large gravels from earlier debris flows deposits, with non-
cohesive debris flow deposits rarely developed.

The yield strength of debris flow is sufficient to keep gravels in
complete suspension (Pierson and Costa, 1987; Coussot and Piau,
1994). And cohesive component is the key factor in determining
the yield strength as well as the turbulence of the fluid
(Rickenmann, 1991; Blair, 1999). Transformations from debris flow
to hyper-concentrated flow is a term referring to yield strength
receding and turbulence enhancing, in turn related chiefly to par-
ticle concentration and slope gradient (Baas et al., 2009, 2011; De
Haas et al., 2015; Le Bouteiller et al., 2020).

Highly turbulent flows bypass obstacles, whereas the viscous



Fig. 8. Comparison of two contrasting styles of debris flow, hyper-concentrated flow, and streamflow events (Modified from Sohn et al., 1999). (a) Cohesive debris flow diluting. (b)
The resultant deposits of diluting model. (c) Cohesive debris flow preceding in advance. (d) The resultant deposits of preceding.
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Fig. 9. Sediments flows propagate and transform on different slopes with resultant distribution of sedimentary structures corresponding to the Lobe A (a), Lobe B (b) and Lobe C (c),
respectively.
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component collides with obstacles, leading to a significant reduc-
tion in its speed of movement and transport capacity (Postma,
1986; De Haas et al., 2015). The viscous component responds
strongly to changes in slope, especially abrupt changes (Kattel et al.,
2018). When the topography changes abruptly from steep to gentle
after a knickpoint, the viscous component will accumulate first, and
the remaining components continue to be transported to form a
transitional flow (Fig. 9(c)). When the slope gradient gradually
decreases, the viscous component decelerates significantly and the
rest of the components overtake it, forming a transitional flow at
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the front and causing the viscous component diluting (Fig. 9(b))
often accompanied by remobilized large gravels. When the slope is
gentle enough and gradient is constant, the viscous component
only gradually decelerates, leading to sediments unloading gradu-
ally, thus diluting into a transitional flow (Fig. 9(a)). So that,
deposition centers develop where there are abrupt changes or the
distal part of the topography. And the accommodation of linear
slope is evenly distributed from proximal to distal, without distinct
deposition center (Fig. 9).
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5.2. Backfilling effect and avulsion

Flume experiments show that delta development is controlled
by mouth bars (Van Dijk et al., 2009). As the river enters the lake,
sediments begin to build up gradually in the upstream direction
due to reduced energy. This causes the river level to rise and floods
are formed (Clarke et al., 2010). When the lake level drops, sedi-
ment supply decreases or upstream hydrodynamics increase, the
earlier formed mouth bars will be eroded or modified (Ganti et al.,
2014; Ganti et al., 2016; Chadwick et al., 2020, 2021, 2022). Back-
filling flooding may promote dilution of the head of the sediments
flow and accelerate the transition of debris flow to hyper-
concentrated flow. At the same time, due to the blockage of the
flooding water, the sediments flow tends to migrate laterally,
forming cross trough-like bedding hyper-concentrated flow de-
posits (Fig. 4). Topography of lobe B makes it easier for sediment to
be transported to the distal to form mouth bars, and at the same
time, backfilling flooding is enhanced by the effect of mouth bars,
which ultimately changes the topography towards lobe A
(Fig. 9(b)). Instead of mouth bars, sheet sand developed on lobe A,
allowing for the development of many braided bars or sheet-
flooding bars upstream (Figs. 3 and 9(a)). Topography of lobe A
makes it “most susceptible to transitioning from the backwater
avulsion regime to the highesediment-load modulated avulsion
regimewith changes in magnitude and duration of floods as well as
sediment supply (Brooke et al., 2022). The lack of mouth bars
makes backfilling flooding almost non-existent in Lobe C, being
dominated by avulsion instead, contributing to the development of
braided channels.
5.3. Topography and graded profile

Sequences are stratigraphic stacking patterns formed by cyclical
changes in accommodation and sediment supply (Catuneanu et al.,
2009, 2011). And sediment supply may fluctuate due to allogenic
and autogenic factors (Catuneanu and Zecchin, 2013). Autogenic
factors are those controls progradation and retrogradation with no
regards to relative sea-level changes and climate (Einsele et al.,
1991; Catuneanu and Zecchin, 2013), such as the switching of
delta lobes due to the diversion of river mouths (Elliott, 1975;
Pulham, 1989). It is clear that lobe switching is a result of the
interaction between sediment distribution and topography. Each
time the lobe stops, it is a hydrodynamic equilibrium which is
consistent with the definition of graded profile (Cross, 1994; Cross
and Lessenger, 1998). This interaction is reflected in the fact that
topographic slope controls the sediment flows’ energy and trans-
formation, which in turn cause erosion or deposition of sediments
Fig. 10. A schematic diagram of forces analysis on the particle and the e
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(Moore and Burch, 1986; Guo et al., 2022). The spatial distribution
of sediments and the style of sedimentary structures are the result
of the interaction between the bed and the sediment flows (Shields,
1936; Church, 2006; Sebille et al., 2020). Changes in lake level affect
the graded profile by changing the elevation of sediment transport,
which is the difference of gravitational potential energy DEp
(Fig. 10).

Sea level and lake level are proxies for base level (Schumm,
1993). But for subaerial environment, graded profile has been
used (Leopold and Bull, 1979; Butcher, 1990). As a lake fan delta, the
base level and accommodation of XLG fan delta need to be deter-
mined using the lake level and the graded profile, which is the
equilibrium surface between erosion and deposition (Cross, 1994;
Cross and Lessenger, 1998). Sediment supply, as well as trans-
formation in sediment flows and even topography can also affect
the graded profiles (Blum and Valastro, 1989; Blum and T€ornqvist,
2000; Van Heijst M and Postma, 2001) (Fig. 9). This implies that the
geometries of the graded profiles are instantaneously determined
by the topography. Each time the construction of sedimentary lobes
stops, the graded profile reaches a new equilibrium. The instanta-
neous graded profile is a hydrodynamic equilibrium profile and
temporary graded profile is an end of depositional trend, which are
corresponding to short-term base level and long-term base level
defined by Catuneanu (2019). The instantaneous graded profile is
the result of a trade-off between sedimentary transport dynamics
and resistance, while the temporary graded profile is a response to
lake level on a longer time scale. The base level affects the evolution
of graded profiles at a long-term scale (Catuneanu, 2019). The ul-
timate graded profile and base level will overlap (Blum and
T€ornqvist, 2000). From this point of view, Lobe C, Lobe B and
Lobe A sequentially correspond to the evolution process of fan delta
development, through debris avalanching under conditions of high
slope relief with a knickpoint, reduced gradients by sediment
unloading with cohesive debris flow transforming to non-cohesive
debris flow, and finally developing widespread unconfined chan-
nels (Prior and Bornhold, 1990; Gao et al., 2020) (Fig. 9(ceb, a)).
5.4. Calculation for graded profile

‘Base level’ or graded profile is a surface of equilibrium which
sedimentary processes strive to attain, at which neither erosion nor
deposition takes place (Barrell, 1917). Therefore, graded profile can
be understood as a virtual topography on which the driving and
resisting forces of sediment transport are balanced in different
kinds of sediment flows. In theory, Navier-Stokes equations can be
used to accurately calculate the dynamic changes of sedimentary
flows on arbitrary topography (Brakenhoff et al., 2020), but there
nergy conversion during transport above and below the lake level.
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are many difficulties in solving the equation (Jerolmack and
Mohrig, 2005).

In order to characterize the process of sediment erosion,
transport and deposition that leads topography to an equilibrium
profile, the better way is to analyze forces of grain on topographic
bed under the impact of traction current above lake level (Yen,
2002; Hunter et al., 2007; Allen, 2012; Yu et al., 2022), Five forces
are involved in the process (Gim�enez-curto and Corniero, 2009;
Allen, 2012; Clark et al., 2017, Fig. 10).

① Immersed weight: W ¼ p
6D

3ðrs � rwÞg,downthrust

② Lift force: Fl ¼ ClAD2rwu2

2 ,upthrust

③ Drag force: Fd ¼ CdAD
2rwu2

2 ,perpendicular to the slope
upwards

④ Support force: Fn,perpendicular to the slope upwards
⑤ Resist force: Ff ¼ mFn,along the slope upwards

where D is the sediment grain size, rs is the grain density, rw is the
sediment flow density, g is the gravitational acceleration, u is the
current velocity, m is the coefficient of friction relating to bed ma-
terial (De Blasio et al., 2011), Cl is the lifting coefficient, Cd is the
dragging coefficient, both of which are related to Re, and A is the
coefficient of the impacted area by flow, which is a constant and
generally takes the value of p/4 (Garde and Sethuraman, 1969).

A simple model based on Newton's first and second laws can be
established:

W cos q¼ Fl þ Fn (1)

ma¼ Fd þW sin q� Ff (2)

where q is the slope angle, m is the mass of grain and ¼ p
6D

3rs , a is
the acceleration of grain.

Deduced:

p
6
D3rsa ¼ CdAD

2rwu
2

2
þ p

6
D3ðrs � rwÞg sin q� m

�
p
6
D3ðrs

� rwÞg cos q� ClAD
2rwu

2

2

�
(3)

Simplified:

a ¼ 3
p
ðCd þ ClÞA

rwu
2

rsD
þ rs � rw

rs
ðsin q� m cos qÞg (4)

Eq. (4) shows that sediment transport is controlled by a com-
bination of flow velocity and topographic slope. An equilibrium
profile is a balance between sediment, fluid velocity and topo-
graphic slope. No erosion nor deposition means a ¼ 0, whence:

ðsin qc � m cos qcÞ ¼ �3
p
ðCd þ ClÞA

rwu
2

Dðrs � rwÞg
(5)

where qc is the critical slope angle of graded (equilibrium) profile.
Equation (5) shows that the geometries of graded profiles will

change with the transformation of sediment flows, due to different
transport modes, on the other hand the slope will have an impact
on flow transformation (Hampton, 1972; Weirich, 1989; Blair and
Mcpherson, 1994; Huai et al., 2021; Brierley and Fryirs, 2022). For
example, in Lobe B, the slope of the terrain is steeper than that of
Lobe A. Theoretically, there should be more debris flow develop-
ment. However, the gradual decrease of the topographic slope leads
to the premature change of the debris flow into hyper-concentrated
flow (Fig. 9(b)).
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One step further, since a ¼ du
dt ¼ du

dx
dx
dt ¼ u du

dx, Eq. (4) can be
rewritten as:

u
du
dx

¼ 3
p
ðCd þ ClÞA

rwu
2

rsD
þ rs � rw

rs
ðsin q� m cos qÞg (6)

where x is the transport distance.
Make M ¼ 3

p ðCd þ ClÞA rw
rsD

, N ¼ rs�rw
rs

g, whence:

dx¼ udu
Mu2 þ Nðsin q� m cos qÞ (7)

Deduced:

x¼
ð
dx¼

ð
udu

Mu2 þ Nðsin q� m cos qÞ
¼1
2
ln
h
Mu2 þNðsin q�m cos qÞ

i (7)

Eq. (4) shows that transport distance of sediment is a function of
flow velocity and topographic slope. From this point of view, the
rise and fall of the lake level essentially changes the topography,
which in turn affects the transport distance of sediments.
5.5. Lake level impacting on slope accommodation

Slope accommodation is the space between existing sediment
surface and the equilibrium depositional surface (the graded pro-
file), typically a fan surface (Smith, 2004; Kneller et al., 2016). Basin
accommodation is controlled by shoreline shifting at some extent
(Patruno and Helland-Hansen, 2018). Shoreline migration affected
the depositional trends and stacking patterns of the strata, through
changing transported elevation of sediments, which is actually the
total gravitational potential energy (Fig. 10). When sediment is
transported near the shoreline, a stable body of water in a lake or
sea adds new resistance to sediment transport (Fig. 10). The
topography above the water provides the main driving force of
sediments transport, and steady body of water provides the main
resisting force. When the driving force is greater than the resis-
tance, progradation forms, basin accommodation priorly filled by
sediments. And when the driving force is quite weak, slope ac-
commodation priorly filled. So steep slopes are more likely to fill
basin accommodation and form progradation stacking pattern
(Blum and T€ornqvist, 2000; Amy et al., 2004; Stevenson et al.,
2013). Besides, the distance of shoreline migration is much larger
on gentle slopes than on steep slopes due to base level rising and
falling (Ainsworth and Pattison, 1994; Posamentier and Morris,
2000) (Fig. 11(a)), which makes steep slopes less sensitive to
shoreline shift on steep topography, due to the small horizontal
distance of shoreline migration, it is likely that depositional system
will still prograde during lake level rising (Smith and Joseph, 2004).
During forced regression, the driving force can exceed critical
values, which can trigger erosion, steeper areas eroded preferen-
tially, gentler parts secondarily, ultimately making topography
reach a new equilibrium, becoming a new graded profile (Moore
and Burch, 1986; Catuneanu, 2006, 2019) (Fig. 11(b, c, d)).
Catuneanu (2006) assumed that knickpoints migrate upstream
with time, resulting in a landward expansion of the subaerial un-
conformity (Fig. 11(b and c)) or in a backfill of the landscape to the
level of the new graded profile, accompanied by fluvial onlap of the
old graded profile (Fig. 11(d)). However, for alluvial systemdfan
delta, knickpoints in case d (Fig. 11(d)) will migrate downstream
with time, resulting in erosion upstream and depositing down-
stream, forming a progradation pattern to the level of the new
gentler graded profile. In case c (Fig. 11(c)), his choice of a



Fig. 11. A conceptual model of the effect and feedback of different topographies on shoreline shifting and lobes stacking pattern during forced base level falling. (a) Horizonal
shoreline shifting and lobes stacking. (b) Alluvial bypass, (c) alluvial incision and (d) alluvial progradation represent Lobe A, Lobe B and Lobe C respectively (modified from
Catuneanu, 2006, Fig. 3.31; Blum and T€ornqvist, 2000; Catuneanu, 2019).
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Fig. 12. Schematic illustration of graded profile evolution for a lake basin. (a) Graded profile and lake level at T0. (b) Graded profile evolution from T0 to T1. (c) The difference
between assumed graded profiles and true graded profiles.
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temporary graded profile (T2) is very arbitrary. The graded profile
for period T2 is steeper than that for period T1, and there should be
a higher landform which makes the instantaneous graded profile
stable enough for a certain length of time to be called a temporary
graded profile.
5.6. Graded profile evolution

The ultimate base level is usually seen as the sea level, but
temporary base levels exist before the ultimate base level is
reached. Fluctuations in the temporary (or instantaneous) base
level (or graded profile) result in units and surfaces of sedimen-
tology (instantaneous graded profile or bedsets), or units and sur-
faces of sequence stratigraphy (temporary graded profile or system
tracts) (Zecchin and Catuneanu, 2012; Catuneanu, 2019). The
instantaneous graded profile is determined by sediment transport
dynamics and resistance, which can be described by Eq. (5). While
the temporary graded profile is a response to lake level on a longer
time scale which can attributed to the height between the source
peak and lake level. What causes the fluctuations is the initial hy-
drodynamics of sediments flows, which can be attributed to
climate. Depositional system is naturally inclined to prograde due
to the hydrodynamic equilibrium of graded profile, as the clino-
forms of instantaneous graded profiles shown in Fig. 12. While the
lake level determines the location of the shoreline, and thus where
the depositional system begins to mainly develop, forming either
progradation or retrogradation (Fig. 12(b)). It is worth noting that
retrogradation can only be caused by lake level rise, whereas pro-
gradation can be driven by hydrodynamics of graded profile or lake
level fall.

For a lake basin, the evolution of its filling has resulted in a
gradual evolution of the topography of the basin margin region
from steep to gentle. In the early period, debris flows were more
developed on the steep slopes, and the lake level rise and fall had a
weaker effect on the stacking pattern of the depositional systems.
In the late period, the topography was gentler, and the change of
lake level had a stronger control on the stacking pattern of the
depositional systems. In terms of periods of geological history, the
pattern of stratigraphic sequences has been more strongly influ-
enced by topography than by changes in lake level. Some of the
progradation may be the result of steeper topography, even though
the lake level was rising at this time. This topographic influence on
the evolution of the lake basin troubles the stratigraphic division
(Fig. 12). How to eliminate this effect when making system tract
divisions is crucial for high resolution stratigraphy sequence.

In addition, the traditional view that the graded profile in-
tersects the lake level at the shoreline implies that there is no ac-
commodating space (Fig. 12(b); Blum and T€ornqvist, 2000;
Catuneanu, 2019). So howdoes a delta form? This is clearly contrary
to the idea of normal recession of lake level. In fact, the graded
profile intersects the lake level at a point of volumetric equilibrium,
where the total supply volume equals the total accommodation
volume (Fig. 12(c)). When the total supply is greater than the total
accommodation, volumetric equilibrium point should be a certain
height above the shoreline so that the total eroded volume equals
the deposited volume, vice versus. The height is the error produced
by the lake level instead of the base level and is the reason why
deltas can exist. When the total supply is less than the total ac-
commodation, deltas can temporarily develop due to the hydro-
dynamics of graded profile. For marine sequences, the influence of
topography and hydrodynamics of graded profile are less than the
change in sea level. But for lake basin sequences, maybe they are
greater than the change in lake level.
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6. Conclusions

(1) There are two types of debris-flow deposits: matrix-
supported floating conglomerates and clast-supported
orientated shearing conglomerates, which correspond to
cohesive and non-cohesive debris flows, respectively. The
hyper-concentrated flow deposits consist of fining upward
remobilized large gravels associated with trough-like inter-
bedded medium gravels and stratified medium to fine
gravels. Stream flow, on the other hand, is mainly distin-
guished by the presence or absence of trough cross bedding
fine gravels and sands.

(2) The transformation in sediment flow is controlled both by
sediment unloading and topography. Sediments unloading
gradually reduces the viscosity of the debris flow, diluting it
and shifting it towards hyper-concentrated flow and stream
flow. In contrast, topography is controlled by the sudden
change of the slope, where the viscous component of the
debris flow settles and the less viscous component forms a
new flow regime which is hyper-concentrated flow. The
latter hyper-concentrated flow leaps over the debris flow and
carries early debris flow deposits downstream, which is the
most significant difference between the two modes.

(3) An equilibrium profile is a balance between sediment, fluid
velocity and topographic slope. The geometries of graded
profiles will change with the transformation of sediment
flows, due to different transport modes, on the other hand
the slope will have an impact on flow transformation. Sedi-
ment transport is controlled by a combination of flow ve-
locity and topographic slope, and transport distance is a
function of flow velocity and topographic slope. From this
point of view, the rise and fall of the lake level essentially
changes the topography, which in turn affects the transport
distance of sediments.

(4) Topography influenced the dynamics of sediment transport,
and the graded profile was an equilibrium between dy-
namics and resistance of sediment transport. The instanta-
neous graded profile and temporary graded profile are
different scales of equilibrium corresponding to hydrody-
namic equilibrium and depositional trend (graded profile
evolution) respectively. Besides, basin evolution makes
slopes change from steep to gentle, which makes the stack-
ing pattern of sediment is more and more sensitive to lake
level changes. Some of the progradation in early stage may
be the result of steeper topography, even though the lake
level was rising at this time. This topographic influence on
the evolution of the lake basin troubles the stratigraphic
division. How to eliminate this effect when making system
tract divisions is crucial for high resolution stratigraphy
sequence.
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