Petroleum Science >2017, Issue 4: 780-790 DOI: https://doi.org/10.1007/s12182-017-0190-1
New insight into prediction of phase behavior of natural gas hydrate by different cubic equations of state coupled with various mixing rules Open Access
文章信息
作者:Amir Hossein Saeedi Dehaghani
作者单位:
Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
投稿时间:2017-11-02
引用方式:Saeedi Dehaghani, A.H. Pet. Sci. (2017) 14: 780. https://doi.org/10.1007/s12182-017-0190-1
文章摘要
Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best, proper predictive model a cumbersome task. It is of industrial interest to make use of cubic equations of state (EOS) for modeling hydrate equilibria. In this regard, this study focuses on evaluation of three common EOSs including Peng–Robinson, Soave–Redlich–Kwong and Valderrama–Patel–Teja coupled with van der Waals and Platteeuw theory to predict hydrate P–T equilibrium of a real natural gas sample. Each EOS was accompanied with three mixing rules, including van der Waals (vdW), Avlonitis non-density dependent (ANDD) and general nonquadratic (GNQ). The prediction of cubic EOSs was in sufficient agreement with experimental data and with overall AARD% of less than unity. In addition, PR plus ANDD proved to be the most accurate model in this study for prediction of hydrate equilibria with AARD% of 0.166. It was observed that the accuracy of cubic EOSs studied in this paper depends on mixing rule coupled with them, especially at high-pressure conditions. Lastly, the present study does not include any adjustable parameter to be correlated with hydrate phase equilibrium data
关键词
-
Gas Hydrate, Cubic equation of state, Mixing rule, Thermodynamic modeling