Petroleum Science >2022, lssue 1: - DOI: Common reflection surface stack; Gaussian-beam migration; Reverse-time migration; Least-squares reverse-time migration
Research progress on seismic imaging technology Open Access
文章信息
作者:Zhen-Chun Li, Ying-Ming Qu,
作者单位:
投稿时间:
引用方式:Zhen-Chun Li, Ying-Ming Qu, Research progress on seismic imaging technology, Petroleum Science, Volume 19, Issue 1, 2022, Pages 128-146, https://doi.org/10.1016/j.petsci.2022.01.015.
文章摘要
Abstract
High-precision seismic imaging is the core task of seismic exploration, guaranteeing the accuracy of geophysical and geological interpretation. With the development of seismic exploration, the targets become more and more complex. Imaging on complex media such as subsalt, small-scale, steeply dipping and surface topography structures brings a great challenge to imaging techniques. Therefore, the seismic imaging methods range from stacking-to migration-to inversion-based imaging, and the imaging accuracy is becoming increasingly high. This review paper includes: summarizing the development of the seismic imaging; overviewing the principles of three typical imaging methods, including common reflection surface (CRS) stack, migration-based Gaussian-beam migration (GBM) and reverse-time migration (RTM), and inversion-based least-squares reverse-time migration (LSRTM); analyzing the imaging capability of GBM, RTM and LSRTM to the special structures on three typical models and a land data set; outlooking the future perspectives of imaging methods. The main challenge of seismic imaging is to produce high-precision images for low-quality data, extremely deep reservoirs, and dual-complex structures.
High-precision seismic imaging is the core task of seismic exploration, guaranteeing the accuracy of geophysical and geological interpretation. With the development of seismic exploration, the targets become more and more complex. Imaging on complex media such as subsalt, small-scale, steeply dipping and surface topography structures brings a great challenge to imaging techniques. Therefore, the seismic imaging methods range from stacking-to migration-to inversion-based imaging, and the imaging accuracy is becoming increasingly high. This review paper includes: summarizing the development of the seismic imaging; overviewing the principles of three typical imaging methods, including common reflection surface (CRS) stack, migration-based Gaussian-beam migration (GBM) and reverse-time migration (RTM), and inversion-based least-squares reverse-time migration (LSRTM); analyzing the imaging capability of GBM, RTM and LSRTM to the special structures on three typical models and a land data set; outlooking the future perspectives of imaging methods. The main challenge of seismic imaging is to produce high-precision images for low-quality data, extremely deep reservoirs, and dual-complex structures.
关键词
-
Zhen-Chun Li, Ying-Ming Qu,