Petroleum Science >2023, Issue1: - DOI: https://doi.org/10.1016/j.petsci.2022.11.002
Experimental investigation on the enhanced oil recovery efficiency of polymeric surfactant: Matching relationship with core and emulsificati Open Access
文章信息
作者:Xin Chen, Yi-Qiang Li, Zhe-Yu Liu, Japan Trivedi, Wen-Bin Gao, Ming-Yue Sui
作者单位:
投稿时间:
引用方式:Xin Chen, Yi-Qiang Li, Zhe-Yu Liu, Japan Trivedi, Wen-Bin Gao, Ming-Yue Sui, Experimental investigation on the enhanced oil recovery efficiency of polymeric surfactant: Matching relationship with core and emulsification ability, Petroleum Science, Volume 20, Issue 1, 2023, Pages 619-635, https://doi.org/10.1016/j.petsci.2022.11.002.
文章摘要
Abstract: The polymeric surfactant can be used as an efficient agent for enhanced oil recovery (EOR) because of its large bulk viscosity and good interfacial activity. However, there is a sparse understanding of its matching relationship with reservoirs and emulsification occurrence conditions, which may affect its migration and EOR efficiency. One intermolecular association molecule polymeric surfactant (IAM) was synthesized by micellar polymerization and characterized with 1H NMR, FTIR, and TGA. The matching relationship between IAM and reservoirs was evaluated by comparing the viscosity retention rate of effluent in the core flow experiments. Moreover, the effect of the matching relationship on EOR in the heterogeneous reservoir was clarified with parallel core displacement experiments by considering different flow abilities of IAM in the high-permeability layer. The occurrence conditions of in-situ emulsification of IAM were evaluated via oil-water co-injection experiments under the different injection rates and oil-water ratios. Microscopic visualization displacement was carried out to compare the micro EOR mechanisms of different chemical systems. The results show that IAM features thickening, shearing resistance, viscoelasticity, thermal stability, and interfacial activity. The matching relationship between cores and IAM could be divided as hardly injected, flow limited, and flow smoothly, corresponding to the viscosity retention ratio of < 20%, 20%–80%, and > 80%, respectively. IAM could gain better EOR efficiency (17.69%) when its matching relationship to the high permeability layer was “flow limited”. The defined mixture capillary number shows that only when it is greater than 1 × 10−3, the in-situ emulsions can be generated. Compared to HPAM, IAM could reduce IFT and form vortices to more effectively displace film and corner remaining oils by stripping and peeling off crude oil. The formed emulsion accumulated at the pore throat could further increase flow resistance, which benefits swept area enlargement. This work could provide theoretical and data support for the parameters design in the polymeric surfactant practical application.
关键词
-
Keywords: Migration; Matching relationship; Viscosity retention ratio; Emulsion; EOR