Petroleum Science >2024, Issue2: - DOI: https://doi.org/10.1016/j.petsci.2023.11.007
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process Open Access
文章信息
作者:Chong-Zheng Sun, Yu-Xing Li, Hui Han, Xiao-Yi Geng, Xiao Lu
作者单位:
投稿时间:
引用方式:Chong-Zheng Sun, Yu-Xing Li, Hui Han, Xiao-Yi Geng, Xiao Lu, Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process, Petroleum Science, Volume 21, Issue 2, 2024, Pages 1369-1384, https://doi.org/10.1016/j.petsci.2023.11.007.
文章摘要
Abstract: Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process (LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2 spiral wound heat exchanger. The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2 mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
关键词
-
Keywords: Hydrogen liquefaction; Spiral wound heat exchanger; Flow pattern transition; Falling film flow