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A B S T R A C T   

Although pore structure variations during thermal maturation have been extensively discussed using natural or 
artificially matured shale samples, related investigations into pore structure heterogeneity and its evolution 
remain scarce, posing challenges in fine reservoir evaluation and exploration target prioritization. The variation 
of pore structure heterogeneity during thermal maturation was determined in this study by integrating multi
fractal theory with nitrogen adsorption-desorption tests using the naturally immature sample and the artificially 
matured samples, and the governing factors were ascertained. The increasing thermal maturity results in organic 
matter transformation, hydrocarbon generation, retention and expulsion, and various types of pore formation, 
driving the variation of pore structure heterogeneity. Pore structure heterogeneity, quantified by the breadth of 
singular spectra, was chiefly impacted by the pore volume difference between diverse types of pores. Macropores 
make a main contribution to pore structure heterogeneity due to their higher percentage of total pore volume 
compared to mesopores and micropores. Through a comparison of pore structure heterogeneity in shale samples 
with different thermal maturity, the impact of thermal maturity on shales was clarified. At immature to low- 
mature stages, nonthermal maturity factors make a main contribution to the inherent pore structure of 
different shales and cause an ambiguous relationship between pore structure heterogeneity and thermal matu
rity. At mature to high-mature stages, pore structure becomes more heterogeneous with increasing thermal 
maturity, resulting from newly formed organic pores or dissolution pores and the progressive generation and 
expulsion of liquid and gaseous hydrocarbons. At the over-mature stage, pore structure heterogeneity decreases 
and then fluctuates on a small scale, related to the collapse of mesopores and macropores caused by compaction 
and the predominance of newly formed micropores.   

1. Introduction 

Shales contain complicated pore systems with a wide spectrum of 
pore sizes, complex pore geometry, and diverse pore types, etc. [1,2], all 
of which are closely related to complicated pore structure and pore 
heterogeneity. The pore structure has a significant impact on the 
occurrence and fluidity of shale oil/gas in these pores [3–6], which is 
important when designing reservoir stimulation and predicting well 

productivity [7,8]. 
A series of techniques have been employed to explore shale pore 

characteristics. 2D/3D imaging approaches are applied to characterize 
surface porosity, pore geometry, and pore connectivity [9,10], including 
light microscopy, scan electron microscopy, micro 3D X-ray microscopy, 
nano 3D X-ray microscopy, and focus ion beam-scan electron micro
scopy, etc. The pore structure of shale reservoirs can be evaluated using 
relevant parameters [11,12], such as surface area, pore volume, and 
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pore size distribution, which can be acquired using gas adsorption (CO2, 
N2, Ar), mercury intrusion, nuclear magnetic resonance (NMR), and 
small/ultra-small angle neutron scattering, etc. Porosity and perme
ability can be determined by gas injection (He), fluid immersion, mer
cury intrusion, NMR, etc. [13,14]. Fractal features of shale pores have 
been explored by establishing a power-law relationship between scales 
(gas absorbed relative pressure, capillary pressure, transverse relaxation 
time) and the corresponding detecting volumes (gas adsorbed volume, 
mercury intrusion saturation, cumulative porosity), and the resulting 
fractal dimensions represent pore surface roughness and pore structural 
complexity. Multifractal theory, which specializes in capturing the local 
fluctuations and defining the heterogeneity of a system using a contin
uous dimension spectrum, has recently been successfully applied to 
quantify the variance of pore size distribution in shales. Pore structure 
heterogeneity of many shales globally has been quantified by processing 
pore images or pore structure data, including Bakken Fm in the Williston 
Basin [15,16], Kongdian Fm and Shahejie Fm in the Bahai Bay Basin [17, 
18], Lucaogou Fm in the Junggar Basin [19], and Wufeng-longmaxi Fm 
in the Sichuan Basin [20–22], to evaluate reservoir types and qualities, 
explore governing mechanism of pore development, and compare the 
pore structure heterogeneity acquired from different methodologies or 
different shales. 

The diagenesis and evolution of shales have been investigated by 
using natural samples or artificially matured samples, providing detailed 
insight into minerals transformation [7,23], kerogen structure changes 
[24–26], hydrocarbons generation-retention-expulsion [27–29], organ
ic–inorganic interactions [30,31], and pore structure evolution [32–37] 

during thermal maturation. Previous studies showed that thermal 
maturation has a positive impact on pore structure alternations in 
naturally or artificially matured samples [34,38], and concluded that 
shales with diverse organic matter types or mineral compositions 
demonstrate diversified pore structure evolution during thermal matu
ration [34,35]. During the process of hydrocarbon generation and 
expulsion, oil generative shales often exhibit a larger rise in pore volume 
and produce large-diameter pores, whereas gas generative shales readily 
form smaller-diameter pores [35,39]. Because of pore constructiveness 
or destruction induced by compaction, dissolution, and cementation in 
conventional reservoirs, pore variation in shale reservoirs is more 
intricate in view of the superimposition of diagenesis and thermal evo
lution [37,40]. However, research on the relationship between pore 
structure heterogeneity and hydrocarbon generation/expulsion during 
thermal maturation is scarce, which impedes the fine evaluation of shale 
reservoirs and the prediction of shale oil or shale gas occurrence. 

In this study, various artificially matured shale samples were ob
tained from hydrous pyrolysis experiments, and pore structure hetero
geneity was quantified by integrating multifractal analysis with nitrogen 
adsorption-desorption tests. Thermal maturation was established using 
the naturally immature lacustrine shale sample and its artificially 
matured counterparts to understand relationships among organic matter 
transformation, hydrocarbon generation-retention-expulsion, pore 
structure variation, and the corresponding heterogeneity. This study 
links variations in pore structure heterogeneity to the transformation of 
organic matter into petroleum and gas, and it has implications for 
prioritizing the key stage of oil and gas accumulation and favorable 

Fig. 1. The location and tectonic framework of the Dongpu Depression in Bohai Bay Basin, Eastern China [37], and sampling well location in this study.  
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reservoirs in self-sourced unconventional reservoirs. 

2. Methodology 

2.1. Samples 

The organic-rich and immature shale sample with total organic 
carbon (TOC) of 1.77% and vitrinite reflectance (Ro) of 0.5% was 
collected from the Shahejie Fm in Dongpu Depression of the Bohai Bay 
Basin, Eastern China (Fig. 1). The shale is a potential source rock for the 
Dongpu Depression, with an average TOC value of 0.76%. As proven by 
the high percentage of exinite and sapropelinite, type II of organic 
matter predominates in the shale. The burial depth of the shale is mostly 
about 1800~2500 m, corresponding to immature to low-mature stages 
[41]. The sulfur-rich oil discovered in many regions of the Depression 
shows immature to low mature characteristics [42]. Six small core col
umns with a diameter of 3.8 cm and a height of 5 cm were drilled from 
the original sample to conduct hydrous pyrolysis. 

2.2. Experiments 

Semi-open pyrolysis experiments were conducted by a high- 
temperature/high-pressure autoclave from Sinopec Petroleum Explora
tion and Production Research Institute (Wuxi, China) [39]. The reactor 
was heated to 300, 325, 350, 375, 400, and 500 ◦C to obtain artificially 
matured shale samples with the various evolutionary stages of hydro
carbon generation, and the corresponding samples were named PY-300, 
PY-325, PY-350, PY-375, PY-400, and PY-500, respectively. The desired 
temperatures were achieved at a heating rate of 1 ◦C/min and then 
maintained for 48 h to ensure the thermal equilibrium of the entire 
system. Samples were saturated with high-pressure deionized water 
during the process of the pyrolysis experiments. Oil cylinders were used 
to provide the confining pressures. Pyrolysis products were collected 
and measured, including hydrocarbon products and sample residues. 

The expelled gaseous mixture was identified and their relative con
tributions were determined by using a 3800 Gas Chromatograph, 
including H2, O2, N2, CO2, gaseous hydrocarbons (CxH2x+2, where 2 ≤

x ≤ 5), etc. The gaseous hydrocarbon amount was calculated according 
to the ideal gas law [43]. The amount of retained oil was determined in 
accordance with total solid residue weight and extractible organic 
matter (EOM) content that was extracted using the Soxhlet extraction 
procedure. Expelled liquid hydrocarbons were quantified by the liquid 
hydrocarbons collected from the oil collector and the autoclave wall and 
pipe. Total hydrocarbon amount was the sum of retained liquid hydro
carbons, expelled liquid hydrocarbons, and expelled gaseous 
hydrocarbons. 

Shale samples were crushed into powder with a grain diameter of 
<80 mesh, and dilute hydrochloric acid was dropwise added into 
approximately 100 mg of powder samples to eliminate inorganic car
bon. After that, the samples were introduced into a LECO CS-200 car
bon/sulfur analyzer to measure TOC. Approximately 100 mg of 
powdered samples (< 100 mesh) were placed into a Rock-Eval 6 device 
to obtain pyrolysis parameters. Thin sections were produced by being 
coated with epoxy resin and polished, and Ro values were determined 
via an AxioSope.A1 microscope equipped with a photomicrometer and 
an oil immersion lens. 

Powder samples (about 0.5 g, < 100 mesh) were degassed for 24 h at 
423 K, and then a JWBK-200 C surface area/pore size analyzer was 
employed to obtain adsorption-desorption volumes of different relative 
pressures (P/P0) with a range of 0.001~0.999 at -196 ◦C. Pores with a 
diameter of less than 200 nm were detected, and pores with different 
pore sizes were identified, including micropores (pore size < 2 nm), 
mesopores (pore size of 2~50 nm) and macropores (pore size > 50 nm) 
[44]. Subsequently, a series of pore structure parameters, including 
specific surface area, total pore volume, micropore volume, and pore 
size distribution (PSD), were calculated by the modified BET model 

[45], the general principle of Gurevich rule [46], HK model [47], and 
BJH model [48], respectively. 

2.3. Multifractal theory 

The box-counting method was applied to nitrogen adsorption data to 
study the multifractal behavior of the shale. A set of different boxes with 
identical scale (r) were required to cover the total length of the target 
object. And then the total length was allocated to these boxes by a dyadic 
scaling down procedure. The density probability in ith box can be written 
as follows: 

Pi(r) = Vi(r)
/ ∑N(r)

i=1
Vi(r) (1)  

where Pi(r) denotes the probability density function; Vi(r) represents the 
pore volume of ith box; N(r) is the total number of boxes, N(r) = 2k 

(k = 0, 1, 2, …). Pi(r), which fits an exponential function of r, can be 
expressed as [49]: 

Pi(r)∝rαi (2)  

where αi is the singularity exponent representing the singularity degrees 
of the system, and relates to number of the boxes Nα(r): 

Nα(r)∝r− f (α) (3)  

where f(α) indicates the multifractal spectrum or singularity spectrum, 
meaning the same or close α values in these boxes. Thus, α(q) and f(α) 
can be calculated as below [50]: 

α(q)∝[
∑N(r)

i=1
Xi(q, r) × logPi(r)]

/

log(r) (4)  

f(q)∝[
∑N(r)

i=1
Xi(q, r) × logXi(q, r)]

/

log(r) (5)  

where Xi(q, r) is the partition function derived from the weighed sum of 
qth power of Pi(r) and also follows a power law function of r: 

Xi(q, r) =
∑N(r)

i=1
Pq

i (r)∝rτq (6)  

where q with a range of -10~10 in increments of 1 was used as expo
nents for scrutinizing the denser or sparser regions of measure μi(q, r) 
[51]; τq is the mass index and can be expressed as: 

τq = lim
r→0

log
∑N(r)

i=1 Pq
i (r)

log(r)
(7) 

Generalized dimension Dq, referred to as singular measure [52], can 
be derived from: 

Dq =
1

q − 1
lim
r→0

log
∑N(r)

i=1 Pq
i (r)

log(r)
=

τ(q)
q − 1

(8) 

In this study, multifractal properties were quantified by using the 
logarithmic form of P/P0 and the density probability of gas adsorption 
volume derived from nitrogen adsorption-desorption results. 

3. Results 

3.1. Bulk organic geochemistry 

The original sample is immature and has Ro of 0.50%. The desired 
experimental temperatures bring about an increase in thermal maturity 
ranging from 0.57% to 2.60% of Ro (Table 1), corresponding to thermal 
evolution from low-mature to over-mature stages. PY-300 with Ro of 
0.57% is at the low mature stage; PY-325 and PY-350 with Ro values of 
0.77% and 1.04%, respectively, are at the mature stage (i.e., the main 
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“oil-window”); PY-375 and PY-400 with Ro of 1.42% and 1.74%, 
respectively, correspond to the high mature stage (i.e., the condensate 
and wet gas window); and PY-500 with Ro of 2.60% is at the overmature 
stage (i.e., the dry gas window). 

TOC continues to decrease with increasing thermal maturity when 
Ro is less than 2.00%, resulting in about 70% of TOC depletion 
compared to the original sample. As thermal maturity increases, TOC 
rapidly decreases when Ro is less than 1.00%, slowly declines at Ro of 
1.00%~2.00%, and eventually slightly increases when Ro is more than 
2.00%. The small increase in TOC during the overmature stage could be 
attributed to the gaseous hydrocarbon expulsion and kerogen graphiti
zation (Table 1, Fig. 2). Furthermore, a high total sulfur (TS) content was 
found in the original sample, and TS exhibits a similar tendency to TOC 
during thermal evolution, implying that sulfur is closely related to 
organic matter transformation. S1 values first climb to their maximum at 
350 ◦C, equivalent to Ro of 0.77%, and subsequently decrease as ther
mal maturity increases. S2 values constantly decrease with advancing 
thermal maturity (Table 1, Fig. 2). The variations among TOC, S1, and S2 
during thermal evolution result from the transformation of organic 
matters, hydrocarbon generation and expulsion, and the formation of 
pyrobitumen [53,54]. 

3.2. Hydrocarbon products 

According to the variation of hydrocarbon products during the 
thermal evolution, three distinct hydrocarbon generation stages can be 
identified: the stage of increasing retained liquid hydrocarbons, the 
stage of increasing expelled liquid hydrocarbons, and the stage of 
increasing expelled gaseous hydrocarbons. During the stage of 

increasing retained liquid hydrocarbons (0.50% < Ro ≤ 0.77%), the 
retained hydrocarbons dramatically increase and predominate in the 
total hydrocarbon generated, whereas expelled gas hydrocarbons and 
expelled liquid hydrocarbons exhibit a modest increase. During the stage 
of increasing expelled liquid hydrocarbons (0.77% < Ro ≤ 1.42%), 
expelled liquid hydrocarbons significantly increase, expelled gas hy
drocarbons somewhat increase, whereas retained hydrocarbons decline 
sharply. Liquid hydrocarbons generated increase to their maximum at 
Ro of 1.04% and then decline as thermal maturity increases. Total hy
drocarbons generated continuously increase when Ro is less than 1.04% 
and then stabilize after that. During the stage of increasing expelled gas 
hydrocarbons (1.42% < Ro), expelled gas dramatically increases, while 
liquid hydrocarbons generated and expelled decline, and retained liquid 
hydrocarbons maintain a low value near to 0 (Table 2, Fig. 3). 

3.3. Pore structure characteristics 

3.3.1. N2 adsorption-desorption isotherms 
Adsorption isotherms of all samples exhibit the II type feature with a 

pronounced knee-point at low P/P0, which is related to the completion 
of monolayer coverage. The maximum adsorption volumes constantly 
increase as thermal maturity advances. Hysteresis loops formed by N2 
adsorption-desorption curves appear in all shale samples (Fig. 4). Ac
cording to the updated classification from IUPAC [51], the original 
sample, PY-300, and PY-325 demonstrate a combination of the H3 and 
H4 types of the hysteresis loops (0.50% ≤ Ro ≤ 0.77%), PY-350 has a 
combination of the H2(b) and H3 types (Ro = 1.05%), and the other 
samples have the H2(b) type (1.42% ≤ Ro). H2(b) type of hysteresis 

Table 1 
Geochemical characteristics of original sample and artificially matured samples.  

Sample 
ID. 

Ro 
(%) 

TOC (ωt, 
%) 

TS (ωt, 
%) 

S1 (mg/ 
g) 

S2 (mg/ 
g) 

Tmax 
(℃) 

Ori  0.50  1.77  1.54  0.33 8.64 430 
PY-300  0.57  1.37  1.26  0.67 7.59 440 
PY-325  0.77  1.34  1.21  1.47 5.81 443 
PY-350  1.05  0.70  0.77  0.57 2.23 450 
PY-375  1.42  0.60  0.64  0.16 0.23 430 
PY-400  1.74  0.55  0.38  0.06 0.04 – 
PY-500  2.60  0.74  1.03  0.02 0 –  

Fig. 2. Variations in geochemical indices of original shale sample and artificially matured samples showing that thermal maturation induces organic matter 
transformation and hydrocarbon generation. 

Table 2 
Hydrocarbon products of the pyrolysis experiments.  

Sample 
ID. 

Total 
hydrocarbon 
yield (mgHC/ 
gRock) 

Liquid HC 
generated 
(mgHC/ 
gRock) 

Retained 
oil 
(mgHC/ 
gRock) 

Expelled 
oil 
(mgHC/ 
gRock) 

Expelled 
gas 
(mgHC/ 
gRock) 

PY-300  5.11  4.94  4.10  0.84  0.17 
PY-325  7.48  7.11  5.93  1.18  0.37 
PY-350  8.71  8.10  3.19  4.91  0.61 
PY-375  8.68  7.80  0.62  7.18  0.88 
PY-400  8.42  6.80  0.24  6.56  1.62 
PY-500  8.81  3.81  0.05  3.76  4.99  
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loops usually attribute to ink bottle pores with complex pore structure, 
such as narrow neck widths and large pore size; H3 type of hysteresis 
loops appear as a result of the silt-like shaped pores from some plate-like 
particles aggregates; and H4 type of hysteresis loops are usually asso
ciated with silt-like shaped pores with uniform size. Consequently, pores 

in shales gradually change from silt-like shape to ink bottle shape with 
advancing thermal maturity. 

During the process of thermal evolution, specific surface area and 
total pore volume overall increase with the increasing pyrolysis severity, 
which implies that newly formed pores change the pore structure of 
shale samples (Table 3). With increasing thermal maturity, the pore size 
distributions of all samples show a close resemblance in shape (Fig. 5). 
The pore volume increases overall as pyrolysis severity increases and 
reaches its maximum when pore diameter is near 200 nm. The 
increasing pyrolysis severity brings about an increase in pore volume 
(Table 3, Fig. 5). The volumes of micropores, mesopores, and macro
pores show different variations during thermal maturation. Micropore 
volume first declines at the low-mature stage and then continuously 
increases with increasing thermal maturity. At the low mature stage, 
newly formed pores are occluded by bitumen and thickened oil gener
ated at this stage, resulting in a decrease in micropore volume [26,38]. 
Mesopore volume varies somewhat between 0.02 cm3/g and 0.03 cm3/g 
and reaches a maximum at 325 ◦C (0.77% of Ro). Macropore volume 
overall increases when thermal maturity is less than 2.00% and even
tually decreases as thermal maturity further increases (Table 3, Fig. 6). 

3.4. Multifractal characteristics 

The monotonic, decreasing generalized dimensions spectra and 
convex parabola-like shaped singularity spectra derived from N2 
adsorption-desorption results justify the multifractal nature of these 
shale samples (Figs. 7 and 8). A series of parameters related to gener
alized dimension and singularity spectra are listed in Table 4. D0 is 
termed capacity dimension or box dimension and represents fractal 
measure of the pore structure complexity [55]. D1 and D2 represent 
information dimension and correlation dimension, respectively [56]. 
The Hurst exponent (H), defined as (D2 + 1)/2, can be used to describe 
pore connectivity [51]; the breadth of singularity spectra (Δα) is quan
tified by the difference between α-10 and α10, which can be utilized to 
quantify the pore structure heterogeneity [20,51]. The generalized 
dimension spectra are depicted in Fig. 7 and present a monotonic 
decreasing trend as q increases from -10 to 10 for all shale samples. 
PY-400 shows the largest amplitude difference of D(q), implying the 

Fig. 3. Hydrocarbon products variation during the thermal evolution. Three 
different hydrocarbon generation stages can be identified by hydrocarbon 
products variation at different thermal maturity ranges, including the stage of 
increasing retained oil (0.5% < Ro ≤ 0.77%), the stage of increasing expelled 
oil (0.77% < Ro ≤ 1.42%), and the stage of expelled gas (1.42% < Ro). 

Fig. 4. Adsorption-desorption curves of original sample and artificially matured samples pyrolyzed at 300–500 ◦C.  
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most heterogeneous pore structure in PY-400. All samples have similar 
Hurst values that are near to 1, indicating good pore connectivity among 
different pores. Singularity spectra are displayed in Fig. 8, and all 
samples show a convex parabola-like shape. The Δα values vary from 
0.664 to 1.130. The original sample, PY-325, and PY-375 have lower Δα 
values than other samples, indicating more homogeneous pore size 
distributions in those samples. 

4. Discussion 

4.1. The correlation among different factors during thermal maturation 

The increasing thermal maturity results in organic matter 

transformation, hydrocarbon generation-retention-expulsion, and 
diverse types of pore formation, driving the variation of pore structure 
heterogeneity. In this respect, Pearson correlation analysis was applied 
to help understand the relationships among different factors, including 
geochemical characteristics, thermal maturity, pore structure, and pore 
structure heterogeneity (Table 5). Obviously, the increasing pyrolysis 
severity contributes more to TOC, S1, micropore volume, macropore 

Table 3 
Pore structure parameters of the original sample and artificially matured samples pyrolyzed at 300~500 ◦C.  

Temperature (◦C) Ro (%) Specific surface area (m2/g) Pore volume (cm3/g) 

Total pore Micropore Mesopore Macropore 

–  0.50  12.418  0.039  0.005  0.024  0.010 
300  0.57  6.724  0.041  0.002  0.022  0.017 
325  0.77  10.441  0.045  0.004  0.029  0.012 
350  1.05  12.383  0.048  0.005  0.025  0.017 
375  1.42  13.209  0.046  0.005  0.021  0.020 
400  1.74  15.404  0.054  0.006  0.028  0.034 
500  2.60  27.263  0.060  0.011  0.026  0.023  

Fig. 5. Pore size distribution of original sample and artificially matured sam
ples showing an increasing trend of pore volume with the increasing pyroly
sis severity. 

Fig. 6. Variation of different types of pore volumes from the original sample 
and artificially matured samples pyrolyzed at 300~500 ◦C. 

Fig. 7. Generalized dimension variation of the original sample and artificially 
matured samples pyrolyzed at 300~500 ◦C. 

Fig. 8. Singularity spectra variation of the original sample and artificially 
matured samples pyrolyzed at 300~500 ◦C. 
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volume, and specific surface area than pore structure heterogeneity and 
mesopore volume. The increasing thermal maturity causes decreasing 
TOC and variation of S1, resulting from the hydrocarbon generation- 
retention-expulsion. The increasing thermal maturity also produces 
more pores, bringing about an increase in micropore, mesopore, and 
macropore volumes, especially for micropores and macropores. Micro
pore volume has a good positive correlation with Ro, implying an 
increasing number of micropores induced by thermal maturity. 
Furthermore, the close correlation between specific surface area and 
micropore volume demonstrates that micropores (< 2 nm) are the pri
mary contributors to specific surface area in shale samples. 

A good correlation between macropore volume and Δα suggests that 
macropores significantly impact the pore structure heterogeneity. When 
compared to micropores and mesopores, the increasing macropore 
volume usually has a high Δα value, resulting in more heterogeneous 
pore structure. Advanced thermal maturity increases pore structure 
heterogeneity, whereas TOC plays the opposite way. The variation of 
pore structure heterogeneity could be related to macropore volume 
changes caused by increasing pyrolysis severity and decreasing TOC. 

4.2. The variation of pore structure heterogeneity 

Pore structure heterogeneity quantified by Δα value was mostly 
impacted by the pore volume variations of different types of pores 
(Fig. 9). The larger the difference in pore volumes among various types 
of pores, the more heterogeneous the pore structure. The correlation 
between Δα and different pore volumes demonstrates that macropores 
play a significant role in pore structure heterogeneity. 

During thermal evolution, pore structure heterogeneity varies 
dramatically due to the transformation of different types of pores and 
the retention or expulsion of oil and gas. The Δα value is lowest when Ro 
is 0.50%, indicating the less heterogeneous pore structure in the original 
sample with no or few hydrocarbons generated. At the low mature stage 
(0.50% < Ro < 0.77%), Δα value significantly increases at first, and then 
rapidly decreases. The transition from more to less heterogeneous pore 
structures in this stage results from the increase of the macropore vol
ume and the decrease of the micropore and mesopore volumes. 

Micropore and mesopore might be occluded by the bitumen and density 
oil gradually generated at this stage [38,57,58]. An increase in macro
pore volume could be interpreted as pre-existing macropores in PY-300. 
At the main oil generation stage (0.77% ≤ Ro < 1.05%), Δα value 
rapidly increases due to a considerable difference in pore volumes 
among different types of pores and is related to increasing macropores 
and decreasing mesopores at this stage. Meanwhile, retained oil begins 
to decrease and expelled oil increases. Mesopore volume reaches its 
maximum when Ro is 0.77%, corresponding to the retained oil peak in 
the study, which could be attributed to organic acid-generated dissolu
tion pores in minerals and organic pores formed from organic matter 
transformation. At the post-oil generation stage (1.05% ≤ Ro < 1.42%), 
the obvious decrease in mesopore volume might result from a decrease 
in retained oil and an increase in expelled oil, and macropores were 
gradually formed by those connected mesopores [59]. The low Δα value 
and the less heterogeneous pore structure are related to the similar pore 
volumes among different types of pores during this stage. The highest Δα 
value appears at the stage of wet gas generation (1.42% < Ro ≤ 2.00%), 
resulting from the large number of macropores generated by connecting 
micropores and mesopores after gas generation and expulsion [59]. At 
dry gas generation stage (2.00% < Ro), Δα value slightly declines, due to 
the similar pore volumes among different types of pores. At this stage, 
the porous solid bitumen from decomposition and condensation pro
vides a large number of micropores [60], which has been found in many 
over-mature shales [61,62]; and the decrease in mesopore volume and 
macropore volume may be caused by compaction from confining pres
sure [60,63]. For shale oil exploration, the middle stage oil window, 
corresponding to Ro of 0.77%~1.20%, is more promising in terms of 
retained oil content, liquid hydrocarbon fluidity, and good pore struc
ture. For gas counterparts, the stage of dry-gas generation is more 
favorable in terms of an increasing number of newly formed micropores, 
which provide the abundant surface area for the adsorption of methane. 

4.3. Pore structure heterogeneity evolution based on a comparison 

A comparison of Δα values of different shales covering thermal 
maturation was established to understand the impact of thermal 

Table 4 
Multifractal parameters of the original sample and artificially matured shale samples pyrolyzed at 300~500 ◦C.  

Sample ID. Generalized dimension spectrum Singularity Spectrum 

D0 D1 D2 H α-10 α0 α10 Δα 

Ori  1.000  0.939  0.903  0.951  1.454  1.076  0.790  0.664 
PY-300  1.000  0.895  0.850  0.925  1.772  1.158  0.738  1.034 
PY-325  1.000  0.916  0.876  0.938  1.531  1.114  0.768  0.763 
PY-350  1.000  0.924  0.876  0.938  1.746  1.093  0.671  1.075 
PY-375  1.000  0.929  0.888  0.944  1.479  1.084  0.787  0.693 
PY-400  1.000  0.898  0.845  0.923  1.814  1.135  0.685  1.130 
PY-500  1.000  0.939  0.902  0.951  1.826  1.088  0.754  1.072  

Table 5 
Correlation coefficients between pore structure heterogeneity parameters and governing factors.   

Δα H Ro (%) TOC (wt 
%) 

S1 (mg/ 
g) 

Micropore volume 
(cm3/g) 

Mesopore volume 
(cm3/g) 

Macropore volume 
(cm3/g) 

Special surface area 
(m2/g) 

Δα  1.000  -0.535  0.469  -0.514  -0.272  0.281  0.273  0.662  0.303 
H  -0.535  1.000  0.204  0.190  -0.174  0.536  -0.150  -0.478  0.505 
Ro (%)  0.469  0.204  1.000  -0.731  -0.610  0.897  0.227  0.691  0.917 
TOC (wt%)  -0.514  0.190  -0.731  1.000  0.485  -0.442  -0.063  -0.775  -0.455 
S1 (mg/g)  -0.272  -0.174  -0.610  0.485  1.000  -0.562  0.347  -0.604  -0.575 
Micropore volume 

(cm3/g)  
0.281  0.536  0.897  -0.442  -0.562  1.000  0.287  0.395  0.997 

Mesopore volume 
(cm3/g)  

0.273  -0.150  0.227  -0.063  0.347  0.287  1.000  0.228  0.262 

Macropore volume 
(cm3/g)  

0.662  -0.478  0.691  -0.775  -0.604  0.395  0.228  1.000  0.423 

Special surface area 
(m2/g)  

0.303  0.505  0.917  -0.455  -0.575  0.997  0.262  0.423  1.000  
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maturity on the pore structure heterogeneity of natural shale samples 
(Fig. 10). Nonthermal maturity factors, such as TOC, mineral compo
nents, and fabric, etc., contribute to the inherent pore structure in 
different shales with various rock compositions [62]. However, thermal 
maturity remains crucial in manipulating the whole process of diagen
esis and hydrocarbon generation. As a result, the comparative result is 
still significant enough to provide a thorough understanding of how 
thermal maturation affects pore structural heterogeneity. At immature 
to low-mature stages, the relationship between pore structure hetero
geneity and thermal maturity is ambiguous, and Δα values have a wide 
range from 0.24 to 1.034, with an average of 0.67. Compared with 
thermal maturity, other factors might make a main contribution to the 
inherent pore structure of different shales when Ro is less than 0.70%. At 
mature to high-mature stages, pore structure becomes more heteroge
neous with increasing thermal stress, reaching the maximum heteroge
neity at about 2.00% of Ro. The Δα values vary from 0.69 to 1.65 and 
have an average of 1.13. Increasing pore structure heterogeneity 
induced by increasing thermal stress is related to some new organic 
pores or dissolution pores and the progressive generation and expulsion 
of liquid and gaseous hydrocarbons throughout this stage. At the 
over-mature stage, Δα values vary from 0.31 to 1.07, with an average of 
0.45. Pore heterogeneity decreases, and then fluctuates on a small scale. 
That might relate to the collapse of mesopores and macropores caused 
by compaction and the predominance of newly formed micropores in the 

pore system at this stage. 
During thermal evolution, pore structure heterogeneity varies 

dramatically due to the transformation of different types of pores and 
the retention or expulsion of oil and gas. The Δα value is lowest when Ro 
is 0.50%, indicating the less heterogeneous pore structure in the original 
sample with no or few hydrocarbons generated. At the low mature stage 
(0.50% < Ro < 0.77%), Δα value significantly increases at first, and then 
rapidly decreases. The transition from more to less heterogeneous pore 
structures in this stage results from the increase of the macropore vol
ume and the decrease of the micropore and mesopore volumes. Micro
pore and mesopore might be occluded by the bitumen and density oil 
gradually generated at this stage [38,57,58]. An increase in macropore 
volume could be interpreted as pre-existing macropores in PY-300. At 
the main oil generation stage (0.77% ≤ Ro < 1.05%), Δα value rapidly 
increases due to a considerable difference in pore volumes among 
different types of pores and is related to increasing macropores and 
decreasing mesopores at this stage. Meanwhile, retained oil begins to 
decrease and expelled oil increases. Mesopore volume reaches its 
maximum when Ro is 0.77%, corresponding to the retained oil peak in 
the study, which could be attributed to organic acid-generated dissolu
tion pores in minerals and organic pores formed from organic matter 
transformation. At the post-oil generation stage (1.05% ≤ Ro < 1.42%), 
the obvious decrease in mesopore volume might result from a decrease 
in retained oil and an increase in expelled oil, and macropores were 
gradually formed by those connected mesopores [59]. The low Δα value 
and the less heterogeneous pore structure are related to the similar pore 
volumes among different types of pores during this stage. The highest Δα 
value appears at the stage of wet gas generation (1.42% < Ro ≤ 2.00%), 
resulting from the large number of macropores generated by connecting 
micropores and mesopores after gas generation and expulsion [59]. At 
the dry gas generation stage (2.00% < Ro), Δα value slightly declines, 
due to the similar pore volumes among different types of pores. At this 
stage, the porous solid bitumen from decomposition and condensation 
provides a large number of micropores [60], which has been found in 
many over-mature shales [61,62]; and the decrease in mesopore volume 
and macropore volume may be caused by compaction from confining 
pressure [60]. For shale oil exploration, the middle stage oil window, 
corresponding to Ro of 0.77%~1.20%, is more promising in terms of 
retained oil content, liquid hydrocarbon fluidity, good pore structure. 
For gas counterparts, the stage of dry-gas generation is more favorable in 
terms of an increasing number of newly formed micropores, which 
provide the abundant surface area for the adsorption of methane. 

Fig. 9. Pore structure heterogeneity variation accompanied with hydrocarbon generation and expulsion and pore evolution during thermal maturation.  

Fig. 10. Pore structure heterogeneity evolution of distinct shales with the 
increasing thermal maturity (The data of Δα and Ro in different shales from 
[15,17,22,64]). 
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4.4. Pore structure heterogeneity evolution based on a comparison 

A comparison of Δα values of different shales covering thermal 
maturation was established to understand the impact of thermal matu
rity on the pore structure heterogeneity of natural shale samples 
(Fig. 10). Nonthermal maturity factors, such as TOC, mineral compo
nents, and fabric, etc., contribute to the inherent pore structure in 
different shales with various rock compositions [65]. However, thermal 
maturity remains crucial in manipulating the whole process of diagen
esis and hydrocarbon generation. As a result, the comparative result is 
still significant enough to provide a thorough understanding of how 
thermal maturation affects pore structural heterogeneity. At immature 
to low-mature stages, the relationship between pore structure hetero
geneity and thermal maturity is ambiguous, and Δα values have a wide 
range from 0.24 to 1.034, with an average of 0.67. Compared with 
thermal maturity, other factors might make a main contribution to the 
inherent pore structure of different shales when Ro is less than 0.70%. At 
mature to high-mature stages, pore structure becomes more heteroge
neous with increasing thermal stress, reaching the maximum heteroge
neity at about 2.00% of Ro. The Δα values vary from 0.69 to 1.65 and 
have an average of 1.13. Increasing pore structure heterogeneity 
induced by increasing thermal stress is related to some new organic 
pores or dissolution pores and the progressive generation and expulsion 
of liquid and gaseous hydrocarbons throughout this stage. At the 
over-mature stage, Δα values vary from 0.31 to 1.07, with an average of 
0.45. Pore heterogeneity decreases, and then fluctuates on a small scale. 
That might relate to the collapse of mesopores and macropores caused 
by compaction and the predominance of newly formed micropores in the 
pore system at this stage. 

5. Conclusion 

The pore structure and its heterogeneity evolution were studied in 
the naturally immature shale sample and artificially matured shale 
samples by integrating the multifractal theory with N2 adsorption re
sults. Thermal maturation impacts organic matter transformation, hy
drocarbon generation-retention-expulsion, and pore structure variation. 
In general, TOC decreases, S1 attains the oil peak at 1.04% of Ro, and 
specific surface area and total pore volume increase as pyrolysis severity 
increases. However, the pore volumes of diverse types of pores are 
different. Micropore volume and macropore volume gradually increase 
with increasing thermal maturity, whereas the relationship between 
mesopore volume and Ro is ambiguous, resulting from the hydrocarbon 
generation-expulsion and newly formed mesopores. 

Furthermore, pore structure heterogeneity is controlled by pore size 
distribution differentially constituted by micropores, mesopores, and 
macropores, causing a complicated change of pore structure heteroge
neity during thermal maturation. Pore structure heterogeneity chiefly 
increases at mature to high-mature stages, closely related to newly 
formed organic pores or dissolution pores and the progressive genera
tion and expulsion of liquid and gaseous hydrocarbons. This study 
provides new insight on pore structure evaluation during thermal 
maturation and has implications for the exploration prioritization of 
shale oil/gas in similar shales. 
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