
Applied Energy 333 (2023) 120604

0306-2619/© 2022 Elsevier Ltd. All rights reserved.

An advanced prediction model of shale oil production profile based on 
source-reservoir assemblages and artificial neural networks 

Yazhou Liu a,b, Jianhui Zeng a,b,*, Juncheng Qiao a,b,*, Guangqing Yang a,b, Shu’ning Liu a,b, 
Weifu Cao c 

a State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, PR China 
b College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, PR China 
c Exploration and Development Research Institute, PetroChina Daqing Oilfield Company, Daqing 163712, PR China   

H I G H L I G H T S  

• Propose a universal multidisciplinary data-driven workflow to predict shale oil production through ANN. 
• Comprehensive quantitative evaluation of geological factors in the source-reservoir assemblages. 
• The geometric and harmonic averaging algorithm strategies are recommended to characterize reservoir heterogeneity. 
• Reservoir storage capacity has the most significant contribution to shale oil production.  
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A B S T R A C T   

Over the past decade, hydrocarbon production from shale oil reservoirs has become increasingly common, and 
successful shale oil exploration and development depends significantly on the accurate evaluation of the sweet 
spots. However, different scholars have established different evaluation standards for sweet spots under different 
geological settings, and it is difficult for these standards to form a universal evaluation standard. The sweet spots 
should be synonymous with the overall combination of geological, engineering and economic sweet spots. The 
shale oil production evaluation would be a valid indicator due to the comprehensive combination of the above 
three perspectives. This paper demonstrates a multidisciplinary data-driven workflow to predict shale oil pro
duction through machine learning and quantitative evaluation of geological variables. 48 test sections from 30 
exploratory wells in the Lucaogou Formation of the Jimusaer Sag are taken as an example for application 
demonstration. The proposed 13 geological variables based on source-reservoir assemblage types, source rock 
quality, reservoir quality, migration dynamics, and conduit conditions realize a systematic and comprehensive 
characterization of hydrocarbon generation, storage, dynamics, and flow stimulation. Based on the different 
averaging algorithms in the ANN model, good agreement has been observed between predicted and simulated 
data for training (R > 0.95) and validation (R > 0.87). Moreover, the geometric and harmonic averaging al
gorithms are preferentially recommended to characterize reservoir heterogeneity. In unconventional reservoirs, 
there is no single attribute that can be used to predict success or failure. The training results of the advanced 
prediction model are better than the other five single reservoir characterization models. On the well J174 
dataset, the sweet spot predicted by the model matches well with the oil test results. The increase in liquid 
hydrocarbon content, mud gas content, TOC and normal faults percentage has positive effects on shale oil 
production, while the increase in reverse faults percentage has negative effects on shale oil production. This 
research provides ideas for intelligent prediction of the distribution of sweet spots in unconventional resources, 
and is also important for the development of intelligent hydrocarbon exploration technology.   
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1. Introduction 

In the 1800s, coal was the primary fuel source supporting human 
development, but in the 1900s, petroleum and natural gas significantly 
replaced coal [1]. Since 1990, petroleum and other liquid resources have 
become major energy consumption, providing for the development of 
science, technology, medicine, etc (Fig. 1a). About a decade ago, “pe
troleum and gas from shale” would not have been considered a valid 
reservoir. Since 2010, multistage hydraulic fracturing and horizontal 
wells have made it possible to produce petroleum and natural gas from 
shale in an economical way [2–3]. The U.S. Energy Information 
Administration (EIA) estimates that U.S. crude oil production in 2021 
from tight (shale) oil resources reaches about 2.64 billion barrels (or 
about 7.22 million barrels per day) (Fig. 1b) [4]. This is equivalent to 
about 65% of total U.S. crude oil production in 2021. Tight (shale) oil is 
a type of oil that occurs in low-permeability shale, sandstone and 
limestone deposits. Outside the United States, four countries account for 
more than half of the identified shale oil resources, including Russia, 
China, Argentina and Libya [5]. Compared with the 41 countries 
assessed, China’s shale oil resources are ranked third after the United 
States, with approximately 32 billion barrels. Drawing on the successful 
experience of shale oil exploration and development in North America, 
China has made some significant achievements in the “13th Five-Year 
Plan” period (2016–2020). For example, the cumulative production of 

shale oil in the Dagang oilfield exceeds 100,000 tons; the shale oil 
resource in Jimusaer Sag is 1.12 billion tons and aims to achieve the 
target of producing 500,000 tons per year in 2022. At present, the China 
Energy Administration has included the strengthening of shale oil 
exploration and development in the “14th Five-Year Plan” (2021–2025). 
Although new technologies have driven down the cost of extraction, 
extracting hydrocarbons from shale oil reservoirs remains highly risky. 
Currently, horizontal well drilling and fracturing techniques can only 
produce less than 10% of shale oil [6]. Thus, the prediction of shale oil 
production will help to screen the sweet spots for the commercial 
development of shale oil. 

In unconventional resources, production performance is extremely 
dependent on accurately targeting multi-stage hydraulic fracturing 
treatments in sweet spots with quality rock properties and good pro
duction potential [7–9]. However, the identification of sweet spots faces 
two primary challenges, namely reservoir characterization and reservoir 
heterogeneity [10]. Over the recent years, parameters based on geology, 
geochemistry, geophysics, reservoir engineering and geomechanics 
have been presented for reservoir characterization and reservoir het
erogeneity considering different geological factors (Table 1). Many 
available projects and studies have focused on identifying sweet spots 
based on the adsorption capacity and mobility of shale oil. Many of these 
studies use S1/TOC > 100 mg HC/g TOC to screen prospective devel
opment zones [11–13]. Although this method is a classic approach, it 

Fig. 1. (a) Energy consumption by fuel from 1990 to 2050. (b) Sources of U.S. crude oil production from 2000 to 2050 [4].  
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Table 1 
Summary of sweet spot evaluation methods in unconventional resources.  

Author(s) Method Disadvantage Geology Geochemistry Petrophysics Reservoir engineering Geomechanics 

Sequence 
stratigraphy 

Sedimentary 
analysis 

Source 
rock 

Shale 
oil 

Porosity Oil 
saturation 

Oil 
content 

Pore 
pressure 

API &
 

GOR 
Production 
data 

Brittleness Stress 
regime 

Jarvie [12] Oil saturation index A large number of core data; 
Not applicable to formations 
with low S1 and TOC; Empirical 
threshold values   

√    √   √   

Hu et al.  
[11]; Li 
et al.  
[13] 

Graded evaluation 
method 

Empirical threshold values; A 
large number of core data   

√    √   √   

Liu et al.  
[14] 

Oil content evaluation 
index 

Human factors affecting oil- 
bearing area description   

√  √ √ √  √ √   

Sharma and 
Sircar  
[15] 

Multi-attribute 
analysis and shale 
potential 

Lack of optimizing key 
parameters; Simple multi- 
attribute stacking   

√   √ √   √ √ √ 

Zhao et al.  
[16] 

Multi-attribute 
stacking 

Subjective selection of variable 
threshold values 

√ √ √  √ √ √   √ √  

Cudjoe et al. 
[17] 

Quality index 
reservoir properties 

Bias to low-value variables 
contribution   

√ √ √ √    √ √ √ 

Eid et al.  
[18] 

Productivity and 
fracture index 

Lack of optimizing key 
parameters   

√  √ √    √ √ √ 

Hou et al.  
[19] 

Sweet spot index Bias to low-value variables 
contribution   

√  √ √  √  √ √  

Licitra et al. 
[20] 

Analysis of highly 
productive zones 

Lack of systematic quantitative 
geological evaluation models; 
too many parameters 

√ √ √  √   √ √ √ √ √ 

Ter Heege 
et al.  
[21] 

Key performance 
indicators 

Too simple; lack of validation 
with production data   

√  √  √    √  

This study Source-reservoir 
assemblages and 
artificial neural 
networks  

√ √ √ √ √ √ √ √ √ √ √ √  
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still has many disadvantages. Firstly, a large amount of core data needs 
to be obtained. Secondly, the threshold value (100 mg HC/g TOC) is an 
empirical value, which is based on the statistical analysis of marine shale 
oil production data. This value is not necessarily applicable to the sweet 
spot evaluation of lacustrine shales. 

Other studies have established best practices or general methods for 
identifying sweet spots [14–16]. Many previous studies have not iden
tified specific quantitative metrics, or only semi-quantitative metrics. 
Some screening criteria contain a mixture of objective threshold in
dicators and subjective descriptive standards. The screening criteria and 
indicators of sweet spots are not consistent in different geological set
tings. Thus, in the case of subjective criteria, this may cause vagueness 
and make it difficult to determine the final desired development zones. 
While these studies help to identify potentially suitable prospective 
plays from the basin scales, more detailed methods are needed to screen 
specific development zones from the sand body scales. 

Moreover, many factors can affect shale oil production or enhanced 
oil recovery (EOR), ranging from source-reservoir assemblage types, 
source rock quality, reservoir quality, migration dynamics to conduit 
conditions [7]. Previous studies of sweet spot evaluation criteria reflect 
the broad expertise of researchers and are not comprehensive in pre
senting holistic criteria that address all factors [17–21]. Furthermore, 
these evaluation parameters are excessive and lack systematic and 
comprehensive. Meanwhile, some evaluation parameters are interre
lated such as oil content, oil saturation and porosity, resulting in unclear 
control factors of shale oil sweet spots. Shale is highly heterogeneous 
vertically and laterally over very short distances. Due to the heteroge
neity of unconventional reservoirs, it is often necessary to gather a large 

amount of data to characterize this heterogeneity to optimize produc
tion enhancement designs and completion practices. Besides, each shale 
play has a unique set of geological settings and conditions that control 
production performance. In these plays, there is no single attribute that 
can be used to predict success or failure. Many previous studies have 
focused more on specific plays or specific projects rather than devel
oping a common set of sweet spot evaluation methods that can be 
applied to any area of interest [10–21] (Table 1). 

As a result, there is a need for a systematic and optimized sweet spot 
evaluation workflow. Unconventional resource development requires 
the input of many disciplines and the application of the right technol
ogies. How can all of this be tied together and optimized? In this paper, a 
data-driven machine learning approach is presented and an advanced 
prediction model based on source-reservoir assemblages and BP neural 
networks is developed for predicting shale oil production. Our meth
odology is applicable to different regions and projects and presents a 
comprehensive approach to quantitative evaluation addressing all 
geological factors. Compared with previous studies, the innovations of 
this study involve the following perspectives: (1) Optimizing compre
hensive quantitative characterization of reservoir heterogeneity in terms 
of source-reservoir assemblage types, source rock quality, reservoir 
quality, migration dynamics, and conduit conditions, including data 
from geology, geophysics, geochemistry, geomechanics, and reservoir 
engineering; (2) Establishing a multidisciplinary data-driven evaluation 
workflow to meet the needs of each stage of development; (3) Providing 
ideas for building digital oil fields through machine learning and 
geological evaluation. The purpose of this paper is to demonstrate shale 
oil production predictions to reduce the risk of shale oil exploration and 

Fig. 2. Flowchart for building shale oil production profile prediction model based on ANN algorithm.  
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development and to avoid adopting a trial-and-error approach to blindly 
drill numerous wells and hydraulic fracturing. 

2. Methods 

2.1. Data establishment 

The data presented in this paper were collected from the Research 
Institute of Experimental Testing of PetroChina Xinjiang Oilfield Com
pany and the State Key Laboratory of Petroleum Resources and Pro
specting, China University of Petroleum (Beijing). Relevant matched 
data were gathered for 48 test sections from 30 exploratory wells, where 
these data consisted of different types of data from geology, geophysics, 
geochemistry, geomechanics and reservoir engineering. Furthermore, 
these data could realize a comprehensive characterization of source rock 
quality, reservoir quality, migration dynamics and conduit conditions 
from qualitative to quantitative characterization, thereby more accu
rately predicting shale oil production in the target section. 

2.2. Workflow and steps 

Fig. 2 illustrates the process of how to construct an advanced shale 
oil production profile prediction model. This process is mainly divided 
into four steps: (1) database establishment; (2) develop source-reservoir 
assemblages assessment; (3) data preprocessing and variable importance 
analysis; (4) develop and evaluate the prediction models for shale oil 
production profile based on ANN algorithm (Fig. 2). Among them, the 
assessment of source-reservoir assemblages covers the model types, 
depth, thickness, source rock quality, reservoir quality, migration dy
namics and conduit conditions in the test sections. 

2.2.1. Source-reservoir assemblage models 
Shale oil systems are self-contained source-reservoir systems in 

which oil generated from organic-rich mudstones is stored in organic- 
rich mudstone intervals or migrates to juxtaposed, continuous organic- 
lean intervals [21–24]. Therefore, in shale oil systems, the spatial 

interconfiguration between source rocks and reservoirs in terms of li
thology, contact patterns, thickness differences, and conduit types (e.g., 
pore-type media and fracture-type media), namely the source-reservoir 
assemblages, has a significant influence on the generation, migration, 
and accumulation of shale oil. Examination of shale oil prospects sug
gests four primary models of source-reservoir assemblages (Fig. 3). The 
first model is presented as a “massive source” model, where the ratio of 
reservoir thickness to formation thickness is less than 0.1. In this system, 
a large amount of hydrocarbons generated from source rocks are 
retained within source rocks, and the overall hydrocarbon expulsion 
efficiency is poor. Due to the low potential for secondary migration here, 
this will result in excellent shale plays and limited conventional re
sources. This model is usually developed in deep and semi-deep lake 
environments. The second model is when the reservoirs are sandwiched 
between organic-rich source rocks, where the ratio of reservoir thickness 
to formation thickness varies from 0.1 to 0.4. In this system, the hy
drocarbon expulsion efficiency is higher than that of the first model, and 
the upper and lower source rocks can contribute hydrocarbons to the 
same reservoir, but it is still fair. Depending on reservoir quality, sec
ondary migration may be low potential, which would result in good 
shale plays and low potential conventional resources. The model is 
typically developed in a semi-deep lake environment. The third model is 
source rock and reservoir interbedding, where the ratio of reservoir 
thickness to formation thickness ranges from 0.4 to 0.6. This system 
leads to good hydrocarbon expulsion efficiency. Secondary migration 
with medium potential could occur in this system and it could result in 
fair shale plays and medium potential conventional resources. The 
model is frequently found in shallow lake environments. The fourth 
model is when the source rocks are sandwiched between reservoirs, 
where the ratio of reservoir thickness to formation thickness is greater 
than 0.6. The hydrocarbon expulsion efficiency in such a system is the 
highest among all source-reservoir assemblage models. Depending on 
the source rock quality, secondary migration occurs with high potential 
and the maturity of the crude oil in the reservoir may be higher than the 
in situ source rock. This model is typically observed in lakeshore envi
ronments. Each source-reservoir assemblage model is closely related to 

Fig. 3. Schematic diagram of source-reservoir assemblage models.  
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changes in the depositional environment. Moreover, different source- 
reservoir assemblages require different drill and development tech
niques. In all models, the ratio of reservoir thickness to formation 
thickness is obtained based on the isochronous stratigraphic framework. 

The isochronous stratigraphic framework is established based on the 
theory of high-resolution sequence stratigraphy (HRSS). Layer correla
tion is a fundamental task in oil and gas exploration and development 
[25–27]. Cross [28] establishes a new method, HRSS, and applies it to 
layer correlation. Based on outcrops, cores, logging and seismic sections, 
HRSS divides the strata into precise stratigraphic sequences, and con
verts 1D drilling or logging information into 3D stratigraphic stacking 
relationships, thereby establishing genetically linked layer correlation at 
different scales. Over the years, many scholars have made a lot of efforts 
on the theory and application of HRSS [29–34]. To establish isochronous 
stratigraphic frameworks in HRSS, important markers for identification 
include unconformity interfaces, flooding surfaces, and event-specific 
depositional surfaces [35–37]. Based on base-level cycles, sequence 
units are further divided into long-term, middle-term and short-term 
cycles. A middle-term base-level cycle is formed during a period of 
modest water depth variation with genetically related stratigraphic 
stacks. During a period of small water depth variation, genetically- 
related stratigraphic stacks with similar lithology and lithofacies form 
a short-term base-level cycle. In this study, the establishment of the 
isochronous stratigraphic framework is based on middle-term and short- 
term base-level cycles. Taking the short-term base-level cycle as the 
formation unit, the ratio of the reservoir thickness to the formation 
thickness of each formation unit is calculated. Based on this, the source- 
reservoir assemblage model of the test section is determined. If the test 
section is located in more than one formation unit, the composite 
naming principle is employed. 

2.2.2. Reservoir heterogeneity characterization 
The test sections are often constituted by source rocks and reservoirs. 

Moreover, even within source rocks or reservoirs, there is substantial 
heterogeneity in the values of target parameters corresponding to 
different depths. Owing to its highly variable nature, some form of target 
parameter averaging is usually required. The question is which average 
is more reliable? The scale-up of these target parameters is becoming 
more problematic due to the complexity and uncertainty of the 
geological body itself at different scales [38–41]. Here, four common 
simple averaging methods are adopted and their effectiveness is 
compared, namely (1) harmonic averaging, (2) geometric averaging, (3) 
arithmetic averaging, and (4) quadratic averaging. The weights of the 
target parameters corresponding to each depth are the same. These 
averages are calculated using equations (1)-(4), respectively. Ulti
mately, these averages have the following relationship, i.e., xh ≤ xg ≤ xa 
≤ xq. 

xh =

[
1
n

∑n

i=1

1
xi

]− 1

(1)  

xg =

[
∏n

i=1
xi

]1
n

(2)  

xa =
1
n

∑n

i=1
xi (3)  

xq =

[
1
n

∑n

i=1
x2

i

]1
2

(4) 

where, xh is the harmonic mean. xg is the geometric mean. xa is the 
arithmetic mean. xq is the quadratic mean. xi is the value of the target 
parameter at the i-th depth point. 

Fig. 4. Single-layer neural network structure.  
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2.2.3. Data preprocessing 
Considering that the physical meaning and scope of each target 

parameter are quite different, the input data of the target parameters in 
this model are normalized in advance. Normalization is the process of 
scaling down or up the raw data to the desired scope, which can then be 
applied to further stages. In particular, normalization plays an important 
role in areas such as soft computing and cloud computing [42–44]. 
There are many normalization techniques, such as Min-Max normali
zation, Z-score normalization, and Decimal scaling normalization. Here, 
we use the Min-Max normalization technique to normalize the target 
parameters [45–47]. This expression is as follows: 

xnor =
x − xmin

xmax − xmin
(5) 

where, x is the absolute value of the target parameter. xmin and xmax 
are the minimum and maximum values of the target parameter dataset, 
respectively. 

2.2.4. Variable importance analysis 
The determination of the main control factors is not only the basis for 

building prediction models, but will also have a profound influence on 
the decision-making of shale oil exploration and development. With the 
advancement of mathematical algorithms, there are many methods to 
determine the importance of variables [48–55]. In this paper, based on 
the target parameters we established, we utilize the grey correlation 
coefficient, Pearson correlation coefficient, Spearman correlation coef
ficient and Kendall correlation coefficient to rank and analyze the 
influencing factors of shale oil production profiles, respectively. 

2.3. Artificial neural network (ANN) 

2.3.1. ANN structure 
In this study, MATLAB R2018a is employed to predict shale oil 

production. For the structure of ANN, it covers the input layer, the 
hidden layer, the number of hidden layer nodes, and the output layer. In 
this work, model types, depth, thickness, source rock quality, reservoir 
quality, migration dynamics and conduit conditions are used as input 
layers for the neural network. Of these, the quantitative evaluation pa
rameters established for the latter four are discussed below. The shale oil 
production from a single well is used as the output layer. In the subse
quent work, the number of hidden layers is determined and the number 
of hidden layer nodes is optimized. The structure of the single-layer 
network framework model is shown in Fig. 4 (taking the number of 9 
hidden layer nodes as an example). 

2.3.2. BP neural network algorithm 
ANN prediction is a nonlinear transformation system with the ability 

to organize and learn. It can be trained and validated spontaneously by 
learning data samples eventually making the output value close to the 
desired output value [56–58]. BP (backpropagation) neural network is a 
concept proposed by scientists led by Rumelhart and McClelland in 1986 
[59]. It is a multilayer feedforward neural network trained according to 
the error back propagation algorithm and is one of the most widely 
applied neural network models. BP neural network has the ability of 
arbitrarily complex pattern classification and excellent multi- 
dimensional function mapping, which solves some problems that 
cannot be solved by simple perceptrons. In essence, the BP algorithm is 
to use the gradient descent method to calculate the minimum value of 
the squared network errors [60–61]. Before the BP neural network can 
make predictions, the data set must be trained. Fig. 5 illustrates the 
workflow of the BP neural network algorithm, which follows the 
following steps [62–64]: 

Assume that a neural network has n input nodes, l hidden layer nodes 
and m output nodes. The threshold of the k-th node in the output layer is 
expressed by θy

k, and the threshold of the j-th node in the hidden layer is 
expressed by θu

j . The weight between the i-th node in the input layer and 
the j-th node in the hidden layer is represented by Vij, and the weight 
between the j-th node in the hidden layer and the k-th node in the output 
layer is represented by Wjk (Fig. 5). A certain learning rate and node 
activation function are also given. 

Using the input vector X, the weight Vij between the input layer and 
the hidden layer and the hidden layer threshold θu

j , as well as the hidden 
layer activation function, the hidden layer output u is computed. 

uj = f

(
∑n

i=1
vijxi + θu

j

)

j = 1, 2,…, l (6)  

f (x) =
1

1 + e− x (7) 

where, l is the number of nodes in the hidden layer, and f is the 
activation function of the hidden layer. 

Utilizing the hidden layer output u, the weight wjk between the 
hidden layer and the output layer and the output layer threshold θy

k, as 
well as the output layer activation function, the output layer output y is 
calculated. 

yk = g

(
∑l

j=1
wjkuj + θy

k

)

k = 1, 2,…,m (8)  

g(x) = x (9) 

where, m is the number of nodes in the output layer, and g is the 
activation function of the output layer. 

Based on the network prediction output y and the actual value yactual, 
the error J is evaluated. 

Jk = (yk − yk,actual)
2 k = 1, 2,…,m (10) 

If the error does not meet the desired value, the individual weights 
and thresholds need to be adjusted to make the network prediction 
closer to the actual value. In this study, the gradient descent method is 
employed to update the weights and thresholds. The updated weights 
are calculated as follows: 

v’
ij = vij − η ∂Jk

∂vij
(11)  

∂Jk

∂vij
= 2
(
yk − yk,actual

)
wjkuj

(
1 − uj

)
xi (12)  

w’
jk = wjk − η ∂Jk

∂wjk
(13) 

Fig. 5. The workflow of the BP neural network algorithm.  
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∂Jk

∂wjk
= 2(yk − yk,actual)uj (14) 

where, v’
ij and w’

jk are the updated weights, and η is the learning rate. 
The updated thresholds are calculated as follows: 

θu’
j = θu

j − η ∂Jk

∂θu
j

(15)  

∂Jk

∂θu
j
= 2
(
yk − yk,actual

)
wjkuj

(
1 − uj

)
(16)  

θy’
k = θy

k − η ∂Jk

∂θy
k

(17)  

∂Jk

∂θy
k
= 2
(
yk − yk,actual

)
(18) 

where, θu’
j and θy’

k are the updated thresholds. 
Determine if the error has reached the desired value or the number of 

iterations of the algorithm has met the maximum value. If not, keep 
repeating the above steps. 

Fig. 6. Distribution of well locations with test data in the Jimusaer Sag. (a) Geographical Location of the Jimusaer Sag in the Junggar Basin; (b) Thickness contour 
map of the Lucaogou formation in the study area (modified from Liu et al. [14,71]). 
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2.3.3. Optimization of the node number in the hidden layer 
BP neural networks can incorporate multiple hidden layers. Too 

many hidden layers may result in overfitting, increasing the training 
difficulty, and possibly even causing the model to fail to converge. In 
general, one hidden layer can approach most nonlinear continuous 
functions with any precision [56]. Therefore, a neural network structure 
with one hidden layer is adopted in this model. Similarly, it is quite 
essential to choose the proper number of nodes in the hidden layer. 
Multiple nodes can reduce the error between the predicted and actual 
values, but too many nodes can lead to overfitting and too much training 
time. Therefore, it is necessary to optimize the node number in the 
hidden layer. Usually, the node number of the hidden layer is calculated 
by the following equation [56,65–66]. 

l =
̅̅̅̅̅̅̅̅̅̅̅̅
n + m

√
+ b (19) 

where, l is the number of nodes in the hidden layer, n is the number of 

nodes in the input layer, and m is the number of nodes in the output 
layer. b is a constant from 1 to 10. 

2.3.4. Activation function 
The activation function, which is the function that runs on the nodes 

of the artificial neural network, is responsible for mapping the inputs of 
the nodes to the outputs [67–68]. If there is no activation function, then 
the network can only express linear mappings. At this time, even if there 
are more hidden layers, the entire network is equivalent to a single-layer 
neural network. If the activation function introduces nonlinear functions 
to the nodes, this will allow the neural network to arbitrarily approxi
mate any nonlinear function. Therefore, this neural network can be 
applied to a wide range of nonlinear models. Currently, there are many 
different types of activation functions, such as Sigmoid, Tanh, Soft-max, 
ReLU, and Max-out functions. The input value of the Sigmoid function 
can be any real number, which can satisfy the large-scale and multi- 

Fig. 7. The medium-term and short-term cycle sequences classification of the Lucaogou Formation in the Jimusaer Sag.  
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Fig. 8. Single-well production distribution of the Lucaogou Formation in the Jimusaer Sag. (a) The P2l1 interval; (b) The P2l2 interval.  
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parameter requirements of this model. The differentiability can signifi
cantly minimize the computational effort during the training process 
[56,69]. Therefore, the Sigmoid function is selected at the hidden layer 
nodes of the model in this study. The linear activation function can 
maintain the range of output values from the previous layer and can also 
produce arbitrary predicted values. Therefore, the linear activation 
function is chosen for the output layer nodes of the model [56]. The final 
BP neural network framework is built, as presented in Fig. 4. 

3. Geological setting 

3.1. Geographical location and sequence stratigraphy 

The Junggar Basin in China is a typical intracontinental super
imposed basin located at the intersection of the Kazakhstan Plate, the 
Siberian Plate, and the Tarim Plate. The Jimusaer sag is situated in the 
southeastern region of the Junggar Basin, with an area of about 1300 
km2 (Fig. 6a) [14,70–71]. The sag is adjacent to the Jimusaer Fault to 
the north, the Laozhuangwan Fault and the Xidi Fault to the west, and 
the Santai Fault to the south, while to the east it shows a gradual uplift 

Fig. 9. Relationship between different source-reservoir assem
blages and production in Lucaogou Formation, Jimusaer Sag. (a) 
Source-reservoir assemblage model types versus daily production; 
(b) Source-reservoir assemblage model types versus cumulative 
production. Key: 1 = “Reservoir-based sandwiched” model; 2 =
“Highly interbedded” model; 3 = “Source-based sandwiched” 
model; 4 = “Reservoir-based sandwiched” & “Highly interbedded” 
model; 5 = “Highly interbedded” & “Source-based sandwiched” 
model; 6 = “Source-based sandwiched” & “Massive source” 
model.   
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slope that eventually transitions to the Guxi Uplift (Fig. 6b). The sag is a 
dustpan-shaped sag with high in the east and south, but low in the west 
and north. Although the sag has undergone several tectonic events, the 
sag is tectonically stable with formation dips between 3◦ and 5◦ in the 
main part, and large faults are not developed [72–73]. 

The Lucaogou Formation of the Jimusaer Sag is a typical saline 

lacustrine-deltaic sedimentary sequence. Affected by mechanical depo
sition, chemical deposition and biological deposition, the Lucaogou 
Formation is a fine-grained mixed sedimentary succession, including 
mudstones, siltstones, sandstones and carbonates [74–76]. This forma
tion can be further subdivided into P2l12, P2l11, P2l22 and P2l21 intervals from 
the bottom to the top based on third-order cycles and lithological 

Fig. 10. Geochemical summary of source rocks from the Lucaogou Formation. (a) Histogram of total organic carbon content; (b) The relationships between hydrogen 
index (HI) and Tmax; (c) The relationships between production index (S1/S1 + S2) and Tmax; (d) Histogram of the S1/TOC*100 ratios. 
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variations. There are two sweet spots in the Lucaogou Formation, the 
upper and lower ones (Fig. 7). The “sweet spot” here refers to the 
reservoir with porosity greater than 5%, oil saturation greater than 45%, 
and industrial oil flow under the existing development method [77]. The 
lower sweet spot is mainly located in the P2l12 interval and is dominated 
by clastic sedimentation, consisting primarily of siltstone, muddy silt
stone, dolomitic siltstone and mudstone. It is distributed throughout the 
sag, with a thickness ranging from 18 to 68 m and an average value of 
42.8 m. The sedimentary facies is dominated by the semi-deep to the 
deep lake and delta-front facies. The upper sweet spot is mainly located 
in the P2l22 interval and is dominated by carbonate sedimentation, 
including micritic dolomite, lime mudstone, sandy dolomite, and dolo
mitic mudstone. It is confined at the eastern slope of the sag, with a 
thickness ranging from 13 to 43 m and an average value of 33.0 m. The 
sedimentary facies is dominated by the semi-deep lake, shore lake and 
beach bar facies. Based on the base level cycles and sedimentological 
response characteristics, the Lucaogou Formation can be divided into 
five medium-term cycles (MSC1-MSC5) and nine short-term cycles 

(SSC1-SSC9) [78–79]. 

3.2. Single well production difference 

At present, Xinjiang Oilfield Company adopts large-scale hydraulic 
fracturing to increase production for the oil resources in the Permian 
Lucaogou Formation, which uses swabbing-based production tech
niques for sustainable exploration and development. From the data 
collected in October 2020, the daily oil production of a single well in the 
Lucaogou Formation showed a trend of gradually increasing from east to 
west. The daily oil production in the P2l1 interval ranged from 0.50 to 
13.88 t/d, with an average value of 6.08 t/d (Fig. 8a); while the daily oil 
production in the P2l2 interval varied from 0.24 to 21.53 t/d, with an 
average value of 6.24 t/d (Fig. 8b). The cumulative oil production of 
single wells in the Lucaogou Formation also presented the same trend. 
The cumulative oil production in the P2l1 interval spanned from 4.99 to 
1321.22 t, with an average value of 213.01 t (Fig. 8a), while the cu
mulative oil production in the P2l2 interval was between 5.31 and 

Fig. 10. (continued). 
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1080.51 t, with an average value of 232.27 t (Fig. 8b). The variation 
trend of the production is largely related to the hydrocarbon generation 
amount of the source rocks, and the burial depth gradually increases 
from east to west in the tectonic framework. At present, the daily oil 
production and cumulative oil production of a single well in the P2l2 
interval are higher than those of the P2l1 interval. However, the explo
ration area of the P2l1 interval is more extensive and fewer wells have 
been drilled in the P2l1 interval, so the P2l1 interval has more promising 
exploration prospects. 

4. Results and modeling process 

4.1. Source-reservoir assemblages assessment 

Taking the short-term cycle as the formation unit for source-reservoir 
assemblage classification, it can be found that there are multiple 

different source-reservoir assemblages in the test sections (Fig. 9). For 
the single source-reservoir assemblage types, the highest daily shale oil 
production appears in the “Highly interbedded” model (average 7.14 t/ 
d), compared to the “Reservoir-based sandwiched” model (average 5.32 
t/d) and the “Source-based sandwiched” model (average 3.53 t/d) 
(Fig. 9a). This trend can also be observed in the composite source 
reservoir assemblage types. The average daily shale oil production for 
the “Reservoir-based sandwiched” & “Highly interbedded” model is 
8.29 t/d, compared with 7.82 t/d for the “Source-based sandwiched” & 
“Massive source” model and 5.24 t/d for the “Highly interbedded” & 
“Source-based sandwiched” model. The variations in cumulative shale 
oil production follow the variations in daily shale oil production, 
showing high average production for the “Highly interbedded” model 
and the “Reservoir-based sandwiched” & “Highly interbedded” model. 
For the single source-reservoir assemblage types, the average of cumu
lative shale oil production changes from 227.54 t in the “Reservoir- 

Fig. 11. The natural maturity shale sequence section of the Lucaogou Formation (TOC range 1–5 wt%).  

Fig. 12. The relationships between TOC and genetic potential (S1 + S2).  
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based sandwiched” model to 238.57 t in the “Highly interbedded” 
model, and then decreases sharply to 69.45 t in the “Source-based 
sandwiched” model (Fig. 9b). For the composite source-reservoir 
assemblage types, the maximum average cumulative shale oil produc
tion for the “Reservoir-based sandwiched” & “Highly interbedded” 

model is 337.61 t, followed by 319.38 t for the “Source-based sand
wiched” & “Massive source” model, and then by 172.09 t for the “Highly 
interbedded” & “Source-based sandwiched” model. Based on this, we 
can conclude that whether it is a single source-reservoir assemblage or a 
composite source-reservoir assemblage, as the proportion of source 

Table 2 
Reservoir physical property data of Lucaogou Formation in Jimusaer Sag.  

Sweet spots Porosity (%) Permeability (mD) 

Maximum Minimum Average Maximum Minimum Average 

Upper sweet spot  2.00  25.50  11.38  0.010  36.300  0.106 
Lower sweet spot  2.00  27.40  9.66  0.010  44.900  0.041  

Fig. 13. Reservoir space characteristics of Lucaogou Formation in Jimusaer Sag (these pictures originate from the internal data of Xinjiang Oilfield). (a) J174, 
3067.3 m, intragranular dissolved pores; (b) J174, 3180.0 m, intragranular and intergranular dissolved pores; (c) J174, 3283.7 m, intergranular dissolved pores; (d) 
J30, 4043.4 m, residual intergranular and intragranular dissolved pores; (e) J30, 4052.6 m, intergranular and intercrystalline pores; (f) J302, 2856.3 m, Intergranular 
and intragranular dissolved pores; (g) J10025, 3571.1 m, fractures; (h) J251, 3759.6 m, fractures; (i) J251, 3754.5 m, fractures and dissolved pores; (j) J10025, 
3462.2 m, intragranular dissolved pores in feldspar; (k) J10025, 3491.8 m, honeycomb-like montmorillonite-illite mixed layer, intercrystalline pores; (l) J301, 
2760.5 m, diamond-shaped granular dolomite grains and intercrystalline pores. 
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rocks increases, the minimum daily production and cumulative pro
duction of shale oil increase. In terms of single source-reservoir assem
blages, the “Reservoir-based sandwiched” model and the “Highly 
interbedded” model have the highest production. As far as the composite 
source-reservoir assemblage is concerned, the “Reservoir-based sand
wiched” & “Highly interbedded” model have the highest production. 
The production of composite source-reservoir assemblages is higher 
than that of single source-reservoir assemblages. 

4.2. Source rock quality assessment 

4.2.1. Qualitative assessment 
The source rocks of the Lucaogou Formation consist of dark shale, 

mudstone, dolomitic mudstone and lime mudstone, with abundant 
organic matter. The organic carbon content ranges from 0.11 to 19.01 
wt%, with an average of 3.15 wt% (Fig. 10a). Approximately 55% of the 
samples exceed 2.0 wt%. The organic matter is a mixture of Type II1 and 
II2 kerogen (Fig. 10b). The hydrogen index varies between 23 mg HC/g 
TOC and 987 mg HC/g TOC with an average of 329 mg HC/g TOC. The 
identified type I and II kerogens indicate that the lake basin has an 
efficient mechanism for capturing terrestrial material, which is intro
duced into the main lake body and mixed with terrestrial organic matter. 
Actively generated and retained hydrocarbons in the Lucaogou Forma
tion shales could be observed through elevated S1 values. This is re
flected in the anomalous production index (S1/S1 + S2) versus Tmax 
values (Fig. 10c) and the elevated S1/TOC ratios (Fig. 10d). Interest
ingly, many of the samples fall within the inert carbon present area 
(Fig. 10c), which may be attributed to the fact that the total S2 peak 
contains a small fraction of higher molecular free hydrocarbons (heavy 
oil residues) [80–84]. Establishing hydrocarbon generation curves for 
the natural maturity shale sequences requires that the samples ideally 
have the same organic matter composition, as the hydrocarbon gener
ation curves depend significantly on the types of kerogen [85–87]. 
However, the dataset shows a large variation in organic matter. There
fore, the dataset is filtered and only the range from 1% to 5% TOC is used 
to build the hydrocarbon generation curves, as it is expected that nar
rowing the TOC range would narrow the organic matter types. Subse
quently, trend lines for vitrinite reflectance, S1/TOC, production index, 
and hydrogen index are constructed (Fig. 11). Fig. 11 suggests that the 

top of the oil window is at about 2800 m and the peak oil generation is at 
around 3400 m. 

4.2.2. Quantitative assessment 
Source rocks contain large amounts of organic matter, usually 

quantified as total organic carbon content “TOC”, and are able to pro
duce hydrocarbons during thermal maturation [87–89]. Therefore, the 
hydrocarbons produced depend on TOC, organic matter type and 
maturity. As shown in Fig. 12, TOC has a good exponential function 
relationship with genetic potential (S1 + S2), and the genetic potential 
increases with increasing TOC. Moreover, since the Lucaogou Formation 
has not undergone erosion events, the burial depth can be used to 
evaluate the source rock maturity. Direct TOC measurement of samples 
in the laboratory is accurate, but costly and time-consuming. There are 
many methods to realize TOC prediction [90–93], among which the 
ΔlogR method is the most widely applied one. In this method, the sep
aration between porosity logging curves (e.g., sonic transit time curves) 
and deep resistivity logging curves is considered indicative of TOC. this 
paper uses the ΔlogR method, as shown in Eqs. (20) and (21). 

ΔlogR = log10(Rt/Rbaseline )+ 0.02 × (Δt − Δtbaseline ) (20)  

TOC = ΔlogR × 10(2.297− 0.1688×LOM) (21) 

where, ΔlogR is the separation between the resistivity log and 
porosity log. Rt and Δt are the resistivity (Ω•m) and sonic transit time 
(μs/ft) of the target formation, respectively. Rbaseline and Δtbaseline are the 
resistivity (Ω•m) and sonic transit time (μs/ft) of the non-source rock 
intervals (organic-lean source rock), respectively. LOM is the level of 
organic maturity. 

4.3. Reservoir quality assessment 

4.3.1. Qualitative assessment 
Based on the measured porosity and permeability of the cores, it can 

be seen that the porosity of the upper sweet spot ranges from 2.00 to 
25.50% with an average value of 11.38%, and the permeability is be
tween 0.010 and 36.300 mD with an average value of 0.106 mD. The 
porosity of the lower sweet spot varies from 2.00 to 27.40% with an 
average value of 9.66%, and the permeability spans from 0.010 to 

Fig. 14. The relationships between hydrocarbon shows, porosity, and oil saturation (modified from Wang et al. [125]).  
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44.900 mD, with an average value of 0.041 mD (Table 2). In summary, 
the reservoir of the Lucaogou Formation has the characteristics of me
dium to low porosity and extra-low permeability. A variety of reservoir 
space types are observed by thin section and scanning electron micro
scopy (SEM) (Fig. 13). Among them, intergranular dissolved pores, 
intragranular dissolved pores and intercrystalline pores are dominant, 
followed by the residual intergranular pores. Intergranular and intra
granular dissolved pores are the main types of reservoir spaces in the 
Lucaogou Formation and usually occur in unstable components such as 
feldspar, carbonates, rock debris and biotite cavities, which eventually 
appear as honeycomb or irregular harbor shapes (Fig. 13a-f and j). 
Intercrystalline pores refer usually to the pores between crystals formed 
during precipitation or recrystallization of mineral crystals (dolomite, 
clay minerals and pyrite). Intercrystalline pores in the Lucaogou For
mation reservoir are mostly developed between dolomite and clay 
minerals (Fig. 13e and k-l). The residual intergranular pores are the 

native pores remaining after the mechanical compaction and cementa
tion of the rocks, and show a scattered distribution (Fig. 13d). The 
fractures in the Lucaogou Formation are divided into diagenetic and 
tectonic fractures, which have limited and localized reservoir space, but 
can greatly improve the permeability of the extra-low permeability 
reservoir (Fig. 13g-i). Integrating with the hydrocarbon shows, it can be 
found that as the hydrocarbon shows better, the porosity and oil satu
ration are also higher (Fig. 14). Interestingly, low porosity does not 
imply low oil saturation. Some samples with low porosity have high oil 
saturation. 

4.3.2. Quantitative assessment 
There are many indicators to characterize the reservoir storage ca

pacity (oil content), such as oil saturation (So), S1 and chloroform ex
tracts. These indicators have different geological meanings. The So refers 
to the liquid hydrocarbon content per unit pore volume [14]. The S1 and 

Fig. 15. Basin Model of well J30 in Jimusaer Sag. (a) The superimposed map of burial history and pore pressure; (b) The relationship between measured pressure, 
hydrostatic pressure, pore pressure, lithostatic pressure and depth; (c) The superimposed map of burial history and excess pressure; (d) The excess pressure evolution 
history of the Lucaogou Formation. 
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chloroform extracts represent the liquid hydrocarbon content per unit 
mass of rock [14]. As mentioned above, if an interval has very little 
porosity and high So, such an interval is not very valuable for develop
ment. Therefore, oil saturation is highly dependent on porosity. 
Measuring S1 and chloroform extracts from samples directly in the 
laboratory is accurate, but expensive and time-consuming. Furthermore, 
light hydrocarbons are quickly lost during sample storage and experi
ments due to their low boiling point. To solve the above challenges, Liu 
et al. [14] build a novel method to characterize the oil content in shale 
oil systems based on geophysical logging data, and eventually realize the 
continuous evaluation of the target formation. Among them, mud gas 
logging is utilized to assess the light hydrocarbon content under actual 
geological conditions. With the advance in flame ionization detectors, 
mud gas logging systems can provide reliable light hydrocarbon anal
ysis. And the equation for liquid hydrocarbons content is as follows: 

LI =
mHC

mb
× 100%  

=
ρHC × VHC

ρb × Vb
× 100%  

=
VHC

VPor
×

VPor

Vb
×

ρHC

ρb
× 100%  

= So × ϕ ×
ρHC

ρb
× 100% (22) 

where, LI is the liquid hydrocarbon content at a certain depth, %. 
mHC and mb are the masses of liquid hydrocarbon and rock, g. ρHC and ρb 
are the densities of liquid hydrocarbon and rock, g/cm3. VHC, Vpor and Vb 
are the volumes of liquid hydrocarbon, pore and rock, cm3. So is the oil 
saturation, %. φ is the porosity, %. 

4.4. Migration dynamics conditions 

4.4.1. Paleo-pressure evolution 
Basin simulation is now a well-established technique to build burial 

history, thermal history, hydrocarbon generation history, hydrocarbon 
expulsion history, and paleo-pressure evolution. Integrating the 
geological conditions of typical wells in the Jimusaer Sag [94–95], 
PetroMod software is utilized to recover the pressure evolution history 
of the Lucaogou Formation. The results from the pressure simulation of 

Fig. 15. (continued). 
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well J30 suggest that the pore pressure increases with the increase of 
burial depth (Fig. 15a), and different levels of excess pressure are 
developed in different formations (Fig. 15b and c). Together with the 
evolution history of the excess pressure in the Lucaogou Formation 
(Fig. 15d), the evolution of the excess pressure can be divided into three 
complete pressurization-release cycles as well as one pressurization 
cycle. From the deposition of the Lucaogou Formation to the Late 
Triassic, the Lucaogou Formation developed weak overpressure with an 
excess pressure of less than 5 MPa, followed by the first pressure release 
by tectonic uplift under the influence of the Indochina movement; 
Subsequently, the Lucaogou Formation continued to subside, and the 
Lucaogou Formation began to generate a large amount of hydrocarbons 
in the Middle Jurassic, besides being influenced by the under
compaction, and the excess pressure reached nearly 10 MPa in the Late 
Jurassic, followed by the second pressure release under the influence of 
the Late Jurassic-Early Cretaceous 2nd tectonic uplift; During the 
Cretaceous period, the sedimentation rate of Lucaogou Formation was 
low, and the overpressure caused by hydrocarbon generation was not 
obvious. The excess pressure of the Lucaogou Formation reached 9 Mpa 
in the Late Cretaceous, and then experienced the third pressure release 
due to the tectonic uplift; Since the Paleogene, with the continuous in
crease of the burial depth of the Lucaogou Formation, especially in the 
Neogene, the excess pressure of the Lucaogou Formation has gradually 
increased, and now the excess pressure has reached the maximum value 
(14.7Mpa). Thus, the excess pressure is now in a process of pressuriza
tion, and the accurate prediction of the excess pressure is beneficial to 

determine the dynamics of hydrocarbon migration. 

4.4.2. Estimation of excess pressure and pressure coefficient 
Pore pressure is the pressure of fluid trapped in the pore spaces of a 

rock [96]. An accurate understanding of pore pressure has significant 
implications for safe drilling and fluid migration. Geologically, porosity 
is exponentially decreasing with depth in normally compacted sedi
mentary sequences [97]. Hence, deviations from the normal compaction 
trend (NCT) may indicate the presence of abnormal pressures. Pore 
pressure is predicted in shale formations due to the significant variation 
of petrophysical properties of shales with depth. Furthermore, pore 
pressure prediction in shale formations will provide an early warning of 
abnormal pore pressures in the underlying reservoirs before drilling into 
them. Eaton [98] proposed pore pressure prediction models based on 
resistivity and sonic transit time logging (Eqs. (24) and (25), respec
tively). Eaton’s model is one of the most widely applied pore pressure 
prediction methods, calibrated with measured pore pressure data. 

For resistivity and sonic transit time logging, the equations for esti
mating pore pressure are as follows: 

Sv =

∫ H

0
ρb(H)gdH (23) 

where, Sv is the vertical stress, Mpa. ρb(H) is the rock density at depth 
(H), g/cm3. g is the gravitational acceleration, assumed as 9.8 m/s2. 

Fig. 16. Ternary diagram of relative abundance of quartz, carbonate minerals and clays in shales of the Lucaogou Formation, Jimusaer Sag (modified from Katz 
et al. [126]). 

Table 3 
The published relationships/models used to estimate BI based on mineralogy (modified from Gogoi et al. [127]).  

Parameter Description Reference 

BI1 =
wQtz

wT 

wQtz is the weight of the quartz fraction. wT is the total weight of the mineral. Jarvie et al. [3] 

BI2 =
wQtz + wDol

wT 

wDol is the weight of the dolomite fraction. Wang and Gale [128] 

BI3 =
wQtz + wF + wM + wCal + wDol

wT 

wF, wM and wCal are the weight fraction of feldspar, mica and calcite. Jin et al. [129] 

BI4 =

wQtz ++wCal + wAl

wQtz ++wCal + wAl + wMus + wCl 

wAl, wMus and wCl are the weight fraction of albite, muscovite and clay. Gholami et al. [130]; Glorioso et al. [131]; Guo et al.  
[132]; 
Kia et al. [133]; 
Lai et al. [134]  
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PP = Sv −
(
Sv − Phyd

)
*
(

Rt

RNCT

)1.2

(24)  

PP = Sv −
(
Sv − Phyd

)
*
(

Δt
ΔtNCT

)3

(25) 

where, PP is the formation pore pressure, Mpa. Phyd is the hydrostatic 
pressure, MPa. RNCT and ΔtNCT are the formation true resistivity and the 
sonic transit time in the shales calculated from the normal compaction 
trend (NCT), Ω•m, μs/ft, respectively. Rt is the formation resistivity at a 
certain depth, Ω•m. Δt is the sonic transit time at a certain depth, μs/ft. 

To better assess the degree of overpressure, this article calculates the 

Fig. 17. The superimposed map of the BI (BI_LOG) based on Young’s modulus and Poisson’s ratio, and the BI (BI1, BI2, BI3 and BI4) obtained using mineralogy. The 
calculation formulas of BI1, BI2, BI3 and BI4 are shown in Table 3. 
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excess pressure and pressure coefficient, as shown in Eqs. (26) and (27). 

EP = PP − Phyd (26)  

PC = PP/Phyd (27) 

where, EP is the excess pressure, Mpa. PC is the pressure coefficient. 

4.5. Conduit conditions 

4.5.1. Brittleness index calculation 
Due to the low permeability characteristics of tight rock plays, the 

most effective method to obtain commercial production rates is artificial 
fracturing. Therefore, the brittleness or fracture potential of the rock is a 
very critical prerequisite. Passey et al. [99] considered that sufficient 
brittleness in the producing fields is obtained at clay contents below 50 
wt%. Other scholars have different views on clay mineral thresholds. 
Mckeon [100] suggested a clay content below 40 wt%, while Zou [101] 
suggested a clay content below 30 wt%. The clay content of the 
Lucaogou Formation shales is highly variable (Fig. 16). The clay content 
of most of these samples is less than 40%, which is favorable for large- 
scale artificial fracturing. High brittleness formations are generally 
considered targets for hydraulic fracturing, and therefore brittleness 
prediction needs to be realized for single wells. In general, Young’s 
modulus (E) and Poisson’s ratio (υ) are the most popular parameters to 
characterize the brittleness of rocks. Rickman et al. [102] proposed 
equations for the shale brittleness index based on these parameters, 
which can be expressed as: 

E = ρbV2
S
3V2

P − 4V2
S

V2
P − V2

S
(28)  

υ =
V2

P − 2V2
S

2V2
P − 2V2

S
(29)  

EBI =
E − Emin

Emax − Emin
(30)  

υBI =
υ − υmin

υmax − υmin
(31)  

BI =
EBI + υBI

2
(32) 

where, VP and VS are the compressional and shear sonic wave ve
locities, m/s, respectively. ρb is the rock density, g/cm3. Emax and Emin 
are the maximum and minimum values of Young’s modulus of the rocks, 
GPa, respectively. υmax and υmin are the maximum and minimum values 

Fig. 18. Anderson fault types and their stress regimes.  

Fig. 19. The relationship between dynamic elastic moduli parameters and 
static elastic moduli parameters. (a) Dynamic Young’s modulus (E) versus Static 
Young’s modulus (Es); (b) Dynamic Poisson’s ratio (υ) versus Static Poisson’s 
ratio (υs). 
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of Poisson’s ratio of the rocks, dimensionless. BI is the brittleness index 
of the rocks. 

Generally, the BI calculated based on Young’s modulus and Poisson’s 
ratio is different from the BI obtained using mineralogy. Various 
scholars have proposed different mineral assemblages under the brit
tleness and ductility classifications to calculate the BI, and these 
methods are summarized in Table 3. Fig. 17 presents the mineralogy- 
derived BI (BI1, BI2, BI3 and BI4) values are superimposed on the 
logging-derived BI (BI_LOG) data in well J174. It can be observed that 
BI_LOG has a good match with BI2 (Fig. 17). It is noticed that the 
mineralogy-derived BI values tend to be higher than the BI_LOG values. 
This is due to the fact that in-situ formation conditions and fluid prop
erties are not accounted for in the mineralogy-derived BI calculations. 
Instead, the BI based on Young’s modulus and Poisson’s ratio fully 
considers the mineral composition, pore, fluid properties and in-situ 
formation conditions. In summary, the BI calculated based on Young’s 
modulus and Poisson’s ratio are good predictors of the weight percent of 
quartz and dolomite in the total minerals. 

4.5.2. Rock fracture pressure 
Fracture pressure is the pressure required to induce fractures in the 

formation. In hydrocarbon exploration and development activities, 
obtaining accurate fracture pressure information is critical to main
taining control of the wellbore at all times. Accurate assessment of 
fracture pressure is a critical parameter for safe drilling, fluid design, 

casing emplacement, enhanced wellbore stability and hydraulic frac
turing optimization [103–106]. The Eaton fracture method is widely 
used worldwide for the estimation of fracture pressures [107]. Based on 
Poisson’s ratio, the equation is as follows: 

PFP =
υ

1 − υ (Sv − PP)+PP (33) 

where, PFP is the fracture pressure, Mpa. υ is the Poisson’s ratio, 
dimensionless. Sv is the vertical stress, Mpa. PP is the formation pore 
pressure, Mpa. 

To better evaluate the ease of rock fracture, the difference between 
the fracture pressure and the pore pressure is calculated in this paper, as 
shown in Eq. (34). 

PFP PP = PFP − PP (34) 

where, PFP_PP is the difference between the fracture pressure and the 
pore pressure, Mpa. 

4.5.3. Stress regime 
Geostress is the internal stress within the Earth’s crust and is strongly 

correlated with gravitational and tectonic stresses [108]. Typically, the 
viability of unconventional resource production depends heavily on 
artificial fracturing. The ability of these fractures to transmit fluids relies 
in part on the stress regimes. Moreover, the understanding of the stress 
regimes allows for better exploration and development of 

Fig. 20. Schematic diagram of stress polygon constrained rock mass (modified from Zoback et al. [113]).  

Fig. 21. Fishbone diagram for well targets assessment.  
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Fig. 22. MAE of shale oil productivity predictions for test data with different training functions and different averaging algorithm models. (a) The quadratic average 
algorithm model; (b) The arithmetic average algorithm model; (c) The geometric average algorithm model; (d) The harmonic average algorithm model. 

Table 4 
Training results for different hidden layer nodes in the different average algorithm models.  

Different average algorithms Number of hidden layer nodes 5 6 7 8 9 10 11 12 13 

Quadratic average algorithm MAE  0.2716  0.1697  0.1644  0.2407  0.2091  0.1123  0.1116  0.1952  0.1920 
MSE  0.0941  0.0456  0.0468  0.0808  0.0673  0.0182  0.0211  0.0476  0.0817 
RMSE  0.3067  0.2135  0.2162  0.2842  0.2594  0.1349  0.1453  0.2182  0.2858 

Arithmetic average algorithm MAE  0.2394  0.2679  0.2458  0.1959  0.2056  0.1296  0.1702  0.2755  0.2159 
MSE  0.1188  0.0834  0.0722  0.0435  0.0622  0.0424  0.0451  0.0995  0.0679 
RMSE  0.3447  0.2887  0.2687  0.2087  0.2494  0.2059  0.2123  0.3155  0.2606 

Geometric average algorithm MAE  0.2237  0.2520  0.1594  0.1869  0.2409  0.1400  0.0943  0.1829  0.2504 
MSE  0.0899  0.0902  0.0319  0.0607  0.0866  0.0307  0.0102  0.0511  0.0996 
RMSE  0.2999  0.3003  0.1785  0.2464  0.2943  0.1751  0.1008  0.2261  0.3157 

Harmonic average algorithm MAE  0.1355  0.1668  0.1732  0.1220  0.1580  0.1891  0.0779  0.1093  0.1835 
MSE  0.0270  0.0402  0.0345  0.0199  0.0385  0.0515  0.0087  0.0185  0.0479 
RMSE  0.1643  0.2005  0.1857  0.1410  0.1962  0.2270  0.0933  0.1359  0.2190  
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unconventional resources, wellbore stability, enhanced oil recovery 
techniques, and reservoir management [109–113]. Based on Anderson’s 
fault theory [114], three types of stress regimes are determined using the 
relative magnitudes of the maximum horizontal stress (SHmax), 

minimum horizontal stress (Shmin) and vertical stress (Sv): (1) Normal 
fault stress regime (Sv > SHmax > Shmin); (2) Strike-slip fault stress regime 
(SHmax > Sv > Shmin); (3) Reverse fault stress regime (SHmax > Shmin > Sv) 
(Fig. 18). Since the calculation process of Sv has been described above, 

Fig. 23. Correlation coefficients of shale oil productivity under different averaging algorithm models. (a) The quadratic average algorithm model; (b) The arithmetic 
average algorithm model; (c) The geometric average algorithm model; (d) The harmonic average algorithm model. 

Y. Liu et al.                                                                                                                                                                                                                                      



Applied Energy 333 (2023) 120604

25

the methods and workflows used to calculate SHmax and Shmin are 
highlighted in this section. In this paper, we adopt the poroelastic hor
izontal strain model to determine the Shmin magnitude. This model as
sumes that the tectonic stresses in the formation are anisotropic in all 
directions [115–117]. The equation for estimating Shmin using the 
poroelastic strain model is as follows: 

Shmin =
υs

1 − υs
(Sv − αPP)+ αPP+

Es

1 − υ2
s
εh +

Esυs

1 − υ2
s
εH (35)  

εh = Sv
υs

Es

(
1

1 − υs
− 1
)

(36) 

Fig. 23. (continued). 
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εH = Sv
υs

Es

(

1 −
υ2

s

1 − υs

)

(37)  

α = 1 − exp
(

7.5tan
ϕπ
2

)

(38) 

where, υs is the static Poisson’s ratio, dimensionless. Es is the static 
Young’s modulus, N/m2. α is Biot’s effective-stress coefficient, dimen
sionless. εh and εH are two horizontal strain components along the Shmin 
and SHmax directions. φ is the porosity, %. 

Young’s modulus and Poisson’s ratio calculated based on Vp, Vs and 
ρb are dynamic elastic moduli parameters (E and υ). Young’s modulus 
and Poisson’s ratio are static elastic moduli parameters based on the 
studies of core deformation in the laboratory (Es and υs). In this paper, 
based on the actual core measurement data and logging data (Fig. 19a 
and b), the relationship equations of dynamic elastic parameters and 
static elastic parameters are established, which are as follows: 

Es = 0.6889E − 5.0251 (39)  

υs = 0.7732υ+ 0.1087 (40) 

Similarly, we still use the poroelastic strain model to estimate SHmax 
as follows: 

SHmax =
υs

1 − υs
(Sv − αPP)+αPP+

Es

1 − υ2
s
εH +

Esυs

1 − υ2
s
εh (41) 

The parameters input in Eq. (41) are described above. 

4.5.4. Fault reactivation potential 
Zoback et al. [106,113] built the stress polygon model by combining 

the Anderson fault theory with the Mohr-Coulomb failure criterion. It is 

assumed that the stress regime of the rock mass is limited by the Mohr- 
Coulomb failure criterion, which means that fault surface sliding occurs 
when the ratio of the maximum to minimum effective principal stresses 
exceeds a particular value defined by the fault frictional coefficient (μ). 
The relevant formula is as follows: 

σ1

σ3
=

S1 − PP
S3 − PP

=
[(

μ2 + 1
)0.5

+ μ
]2

(42) 

where, σ1 and σ3 are the maximum and minimum effective principal 
stresses, MPa, respectively. S1 and S3 are the maximum and minimum 
principal stresses, MPa, respectively. PP is the pore pressure, MPa. μ is 
the fault frictional coefficient, and the average value of μ is assigned to 
0.6. 

Considering the variability of stress regimes for different fault types, 
Eq. (42) can be further converted to: 

(1) Normal Fault (NF): 

Sv − PP
Shmin − PP

⩽
[(

μ2 + 1
)0.5

+ μ
]2

(43) 

(2) Strike-slip Fault (SS): 

SHmax − PP
Shmin − PP

⩽
[(

μ2 + 1
)0.5

+ μ
]2

(44) 

(3) Reverse Fault (RF): 

SHmax − PP
Sv − PP

⩽
[(

μ2 + 1
)0.5

+ μ
]2

(45) 

The parameters input in Eqs. 43–45 are as stated above. 
The stress polygon delineates the range of possible stress magnitudes 

at a specific depth and pore pressure for a specific frictional coefficient, 
as shown in Fig. 20. In the stress regime outside the stress polygon re
gion, the rock mass will be in an unstable state under natural conditions. 
Therefore, we use the stress polygon to calculate how much additional 
pore pressure is required to reactivate the fault. For example, the stress 
regime of a rock mass at a certain depth is shown as the red box in 
Fig. 20, which requires additional pore pressure of ΔPP for fault reac
tivation. In this paper, we calculate the ΔPP of each rock mass to 
quantitatively characterize the fault reactivation potential. 

Table 5 
Correlation coefficients of shale oil productivity under different averaging 
algorithms.  

Different averaging algorithms Training Validation Test All 

Quadratic average algorithm  0.96712  0.96609  0.94341  0.9638 
Arithmetic average algorithm  0.94506  0.99455  0.86249  0.93289 
Geometric average algorithm  0.99412  0.87144  0.96953  0.97364 
Harmonic average algorithm  0.99997  0.89168  0.92785  0.97528  

Fig. 24. Training and validation loss curves for four different reservoir heterogeneity characterization strategies.  
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4.6. Development of ANN prediction model 

In this paper, there are quantitative datasets of 48 test sections as 
input data for the ANN prediction model. When the BP neural network 
algorithm is applied for training, the initial data set is randomly divided 
into training, testing and validation samples in the ratio of 7:1.5:1.5. 
Fig. 21 shows a fishbone diagram of the model building process. Pre
vious studies have shown that the main factors for shale oil production 
(sweet spot) prediction are mostly subjective and unsystematic, which 
may introduce large errors in model building. In this study, these data 
are systematically qualitative to quantitative evaluation from geology, 
source-reservoir assemblages, source rock quality, reservoir quality, 
migration dynamics and conduit conditions. Then, based on the ANN 
model, a prediction model is established through repeated training. 
Ultimately, better recommendations are provided for the sweet spot, 
well spacing, fracture optimization and economics. The maximum 
number of training times for the target is set to 1000, the minimum 
gradient is 1 × 10− 6, and the learning rate is 0.001. Model validation is 
an important step to verify the validity of the model. This paper uses 
mean absolute error (MAE), mean squared error (MSE) and root mean 
squared error (RMSE) to calculate the error between the predicted and 
actual data in the testing dataset. These error calculation expressions are 
as follows: 

MAE =
1
n
∑n

i=1
|Actuali − Predictedi| (46)  

MSE =
1
n
∑n

i=1
(Actuali − Predictedi)

2 (47)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Actuali − Predictedi)

2

√

(48) 

where, Actuali is the i-th actual shale oil production data, t/d•m. 
Predictedi is the i-th predicted shale oil production data, t/d•m. 

As you know, ANN training is nothing more than a black box 
training. Therefore, the pretrained models are only useful if they are 
cross-checked with the simulation models for sensitivity analysis. The k- 
fold cross-validation technique is one of the most commonly used ap
proaches to evaluate the performance of machine learning models and 
model selection [118]. In this method, the initial data set is randomly 
divided into k subsets of equal size. Each subset is made a test set once 
separately, while the remaining k-1 subsets are used as training sets. The 
previous process is further repeated k times to ensure that each subset is 
validated once. Finally, the results of the k validations are averaged and 
used as the sensitivity analysis of this model [119–120]. The cross- 
validation effectively utilizes all available data and avoids over- and 

Fig. 25. The Pearson correlation coefficient heatmap showing the relationship between the 17 variables. Key: SRA = source reservoir assemblages; φ = porosity; So 
= oil saturation; ρb = the densities of rock; LI = liquid hydrocarbon content; MGC = mud gas content; EP = excess pressure; PC = pressure coefficient; BI = brittleness 
index; PFP_PP = rock fracture pressure; NF% = normal faults percentage; SF% = strike-slip faults percentage; RF% = reverse faults percentage; ΔPP = fault 
reactivation pressure. 
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under-learning states, and the results obtained are more convincing. The 
stability and accuracy of the evaluation results of the cross-validation 
technique are highly dependent on the k-values. To minimize this ef
fect, multiple times k-fold cross-validation tests are employed [121]. 

5. Discussion 

5.1. Comparison of different reservoir heterogeneity models 

Considering the thickness difference of the test sections, we divide 
the shale oil production by the thickness to obtain the shale oil pro
ductivity as the output layer. And the input layer includes 13 variables, 
namely source reservoir assemblages, TOC, depth, liquid hydrocarbon 
content (LI), mud gas content, excess pressure (EP), pressure coefficient 
(PC), brittleness index (BI), rock fracture pressure (PFP_PP), percentage of 
normal faults, percentage of strike-slip faults, percentage of reverse 
faults, and fault reactivation pressure (ΔPP). The learning rule of the BP 
neural network algorithm is to use the fastest descent technique to 
continuously change the weights and thresholds of the network by back 
propagation to reduce the sum of squared errors of the network. For 
different domains, there are various training learning methods for BP 
neural networks, including trainlm, traincgb, trainrp, traingdm, traingda 
and traingd. In this paper, we determine the optimal training function by 
comparing the MAE of test data under different training functions and 
different averaging algorithms. As shown in Fig. 22, different average 
algorithm models have different optimal training functions. Among 
them, the traingda function is the optimal training function for the 
quadratic and arithmetic average algorithm models (Fig. 22a and b), 
while the trainglm function is the optimal training function for the 
geometric and harmonic average algorithm models (Fig. 22c and d). 
Based on the above quantitative characterization of the oil test section, 
the number of nodes in the hidden layer is between 4 and 14 due to the 
number of nodes in the input layer being 13 and the number of nodes in 
the output layer being 1. In this paper, we use MATLAB R2018a to 
determine the number of optimal hidden layer nodes. MAE, MSE and 
RMSE are regarded as indicators of prediction accuracy by training 
different training functions, number of nodes in the hidden layer and 
averaging algorithms. As shown in Table 4, the optimal number of nodes 
for the hidden layer is 10 in the quadratic and arithmetic average 

algorithm models, while the optimal number of nodes for the hidden 
layer is 11 in the geometric and harmonic average algorithm models. 

The correlation coefficient (R) measures the correlation between the 
predicted and actual values. When R is close to 1, it indicates a strong 
correlation between them. Shale oil productivity prediction models with 
different averaging algorithms were trained, and the results are shown 
in Fig. 23. Table 5 shows the correlation coefficients of the different 
averaging algorithm models in the training stage. It can be observed that 
the training results of different average algorithm models are satisfac
tory with high correlation coefficients. Among the shale oil pro
ductivities analyzed, the overall correlation coefficients were 0.9638, 
0.93289, 0.97364 and 0.97528 for the quadratic average, arithmetic 
average, geometric average and harmonic average algorithm models, 
respectively. The correlation coefficients of the training and validation 
data for all models exceeded 0.87. As shown in Fig. 23, the black dashed 
line represents that the predicted and actual values are equal. Based on 
the distribution of points and correlation coefficients, the geometric 
average algorithm and the harmonic average algorithm are preferen
tially recommended as a characterization of reservoir heterogeneity. In 
addition, the performance of ANN can be assessed by the speed of model 
convergence and the training and validation loss curves of the model. 
Fig. 24 illustrates the training and validation loss curves for four 
different reservoir heterogeneity characterization strategies. Among all 
strategies, the harmonic and geometric averaging algorithms perform 
the best: they converge quickly and have the lowest training and vali
dation losses. Therefore, we suggest using either the harmonic average 
algorithm or the geometric average algorithm strategy to characterize 
reservoir heterogeneity. 

5.2. Performance assessment of different reservoir characterization 
models 

During the development stages of unconventional resources, is our 
proposed reservoir characterization model better than other well-known 
reservoir characterization models? The heatmap of correlation co
efficients provides a full picture of the data relationships and compre
hensively identifies attribute-to-attribute relationships. Fig. 25 presents 
the heatmap correlation matrix that correlates the 17 variables with 
each other. The matrix shows that liquid hydrocarbon content (LI) and 

Fig. 26. Box plots of 8 times 8-fold cross-validation results for 6 reservoir characterization element models on the dataset of this study.  
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mud gas content (MGC) are highly correlated with output daily pro
ductivity, compared with porosity (φ), oil saturation (So) and rock 
density (ρb); therefore, the quantitative evaluation model we built for 
reservoir storage capacity is more effective. The matrix also confirms 
that there is no single variable that determines the quality of uncon
ventional reservoirs, but that many variables are important. Therefore, 
unconventional reservoir characterization should use an integrated and 
multidisciplinary approach that includes the study of all important pa
rameters, whenever they are available, taking into account their scales, 
heterogeneity and relationships. 5 reservoir characterization elements 
are used individually to predict shale oil productivity. 8 times 8-fold 
cross-validation and correlation coefficients are employed to evaluate 
the performance of the shale oil productivity prediction models con
structed from 6 ANN inputs. The training and testing results of the 6 
prediction models present significant differences. Based on the average 
and median of the correlation coefficients, the six prediction models are 
ranked as follows: Advanced model (this study) (average = 0.76, me
dian = 0.80) > Reservoir quality model (average = 0.66, median =
0.69) > Source rock quality model (average = 0.44, median = 0.42) >
Conduit conditions model (average = 0.29, median = 0.28) > Migration 
dynamics model (average = 0.13, median = 0.10) > Source reservoir 
assemblages model (average = 0.03, median = 0.01) (Fig. 26). The 
advanced model is better than other single geological factor evaluation 
models. In addition, evaluation parameters with high correlation co
efficients as inputs can make prediction models more accurate (Fig. 25). 

However, here we place more emphasis on multidisciplinary uncon
ventional characterization approaches that make them applicable to 
different geological settings. 

To further verify the effectiveness of the proposed method to deter
mine the sweet spots, the results obtained by the method are combined 
with the oil test results and compared with the methods from the state- 
of-the-art. Among them, Jarvie et al. [12] proposed OSI (S1/TOC) > 100 
as the most classical method to evaluate the potential sweet spot of shale 
oil. Well J174, which was continuously cored from 3109.2 m to 3440.2 
m, is a typical well for studying the continental shale oil systems in 
China. The test results showed that the Shot1 section produced 7.76 tons 
of oil per day, while the Shot2 section produced 2.15 tons of oil per day 
(Fig. 27). Fig. 27 presents the evaluation results for each geological 
factor, as described above. It can be observed that the entire section of 
the Lucaogou Formation has hydrocarbon shows, but there are differ
ences in the intensity of the hydrocarbon shows. Track target1 shows the 
sweet spots identified by OSI > 100, while track target2 presents the 
sweet spots identified by the shale oil productivity calculated in this 
study. The results obtained by these two methods are basically the same. 
In addition, sweet spot2-3 could also be a potential shale oil production 
interval (Fig. 27). The testing result of this interval is 2.15 t/d, which 
provides sufficient evidence to test the effectiveness of the model pro
posed in this paper. Furthermore, the proposed shale oil productivity 
prediction model not only provides favorable locations for sweet spots, 
but also provides suggestions for development thickness to meet the 

Fig. 27. Prediction of potential sweet spots of the Lucaogou Formation in well J174, Jimusaer Sag. Key: LI = liquid hydrocarbon content; MGC = mud gas content; 
EP = excess pressure; PC = pressure coefficient; BI = brittleness index; NF = normal faults; SF = strike-slip faults; RF = reverse faults; PFP_PP = rock fracture 
pressure; ΔPP = fault reactivation pressure; Track target1 = the sweet spots identified by OSI > 100. Track target2 = the sweet spots identified by the method 
proposed in this study (Track productivity); Track shot = the oil test section. 
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lower limit of industrial oil flow. Although sweet spot1-1 or sweet spot2- 
1 is identified by both methods, the development location of the interval 
is preferably located in the interval with tension stress regime and high 
productivity (Fig. 27). This indicates that the new method can be suc
cessfully supplemented to predict the sweet spots in unconventional 
reservoirs. 

5.3. Variable importance analysis 

The importance analysis of variables affecting shale oil productivity 
is significant for the next step of shale oil exploration and development. 
In this paper, the grey correlation coefficient, Pearson correlation co
efficient, Spearman correlation coefficient and Kendall correlation co
efficient are used to evaluate the correlation between 13 variables and 
shale oil productivity. Among them, the grey correlation coefficient is 
suitable for solving complex interrelationships between multiple factors 
and variables according to the degree of similarity of the change curves 
[122–123]. The Pearson correlation coefficient is employed to assess the 
linear relationship of the covariance matrix of the data set [124]. The 
Spearman correlation coefficient is usually used to assess the nonlinear 
correlation between data based on nonparametric statistical theory 
[124]. The Kendall correlation coefficient is another alternative method 
for assessing nonlinear correlations, counting two variables as consistent 
or inconsistent pairs based on their rank [124]. When dealing with tied 
rankings, this method outperforms the Spearman correlation coefficient. 
In this paper, the correlation analysis reflects only the relationship be
tween the influencing factors and shale oil production, without 
considering the effects of other variables. The correlation coefficient 
rankings of the four methods are shown in Table 6. The results show that 
there are four main controlling factors affecting shale oil productivity, 
namely reservoir quality, source rock quality, stress regime and source 
reservoir assemblages, as shown in Table 6. Prior to our work, few 
scholars had systematically integrated geological and mathematical 
analysis of the various factors affecting shale oil production. Fig. 28 
shows the comprehensive ranking of the correlations of different influ
encing factors under different correlation coefficient algorithms. Since 
the method of calculating the correlation coefficient is different, the 
obtained correlation coefficient is also different. In this paper, the cor
relation coefficients obtained by the four methods are sorted and then 
averaged, and finally the comprehensive sorting results of different 
influencing factors are obtained. It can be found that the liquid hydro
carbon content and mud gas content are tied for the first place in the 
influencing factors, which can represent the reservoir storage capacity. 
TOC, reverse faults percentage, normal faults percentage and the source- 
reservoir assemblages are closely related, ranking 2nd to 5th. 

5.4. Uncertainty analysis and recommendations 

Quantitative assessment of shale oil production is not accurate sci
ence, but it can reduce the risk of shale oil exploration and development. 
The quantitative evaluation models and methods described above 
mainly depend on the accuracy of the source-reservoir assemblage 
models, source rock quality evaluation, reservoir quality evaluation, 
migration dynamics prediction and conduit condition evaluation. These 
evaluation conditions include a total of 13 evaluation indicators. 
Although all elements are analyzed equally in Fig. 21, we believe that 
different geological settings have different key elements for high shale 
oil production. Therefore, different methods of obtaining correlation 
coefficients are used to determine the contribution of each variable. 
However, there are still some uncertainties in this evaluation system, 
which arise from the three-dimensional reservoir performance, shale oil 
mobility and three-dimensional fracture network. Currently, our selec
tion of perforation targets is based on single well production predictions 
without a clear understanding of the lateral performance of the targets. 
Ultimately it may affect the economic value of target development. The 
shale oil system is dominated by in-situ accumulation without obvious Ta
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fractionation. Therefore, it often has the characteristics of high density 
and high viscosity. The quality or mobility of shale oil finally affects 
shale oil production. Furthermore, a large amount of measured data is 
required to calibrate the predicted data, which is not a problem for 
mature basins, but there is a large uncertainty for immature exploration 
plays. However, this disadvantage can be solved by analogy with mature 
exploration areas with similar geological settings. How to reduce the risk 
of shale oil exploration and development? Different source-reservoir 
assemblages have different degrees of hydrocarbon enrichment and 
economic development values. The analysis of the causes of high shale 
oil production is the key to further exploration of shale oil. Firstly, 
different stratigraphic sequences are classified for the target and the 
corresponding geological framework model is established. Geological, 
geochemical, geophysical, rock mechanics and reservoir engineering 
evaluations are conducted on the present test sections to identify the 
reasons for the hydrocarbon differential accumulation. Finally, well 
seismic integration is performed to predict key elements and preferably 
select favorable exploration plays and intervals. Furthermore, it is 
strongly recommended that integrated geological evaluation and ma
chine learning approaches can further attempt to improve the overall 
understanding of unconventional resource evaluation and prediction as 
future work. 

6. Conclusions 

This thesis proposes a new approach incorporating ANN techniques 
to evaluate the complex characteristics of shale oil reservoirs with the 
objective of optimizing the production performance of these resources, 
while developing new methods and guidelines for the development of 
shale oil resources. The main conclusions are summarized as follows:  

(1) The proposed quantitative evaluation method based on source- 
reservoir assemblage types, source rock quality, reservoir qual
ity, migration dynamics and conduit conditions can 

systematically and comprehensively characterize hydrocarbon 
generation, storage, dynamics and flow stimulation.  

(2) The ANN architectures developed based on different averaging 
algorithms have good agreement between predicted and simu
lated data for training (R > 0.95) and validation (R > 0.87) of the 
models. Based on the correlation coefficients and loss function 
plots, the geometric and harmonic averaging algorithm strategies 
are preferentially recommended for characterizing reservoir 
heterogeneity. 

(3) There is no single variable that determines the quality of un
conventional reservoirs, but many variables are important. The 
training results of the advanced prediction model are better than 
the other five single reservoir characterization models. The sweet 
spot of shale oil predicted by the model is in good agreement with 
the test oil results, which is a good complement to the current 
state-of-the-art methods.  

(4) For variable importance analysis, liquid hydrocarbon content and 
mud gas content are tied for first place, followed by TOC, reverse 
faults percentage, normal faults percentage and the source- 
reservoir assemblages. Among them, the increase in liquid hy
drocarbon content, mud gas content, TOC and normal faults 
percentage has positive effects on shale oil production, while the 
increase in reverse faults percentage has negative effects on shale 
oil production. 

Due to the specificity of shale oil migration and accumulation, it is 
suggested to better focus on the three-dimensional reservoir perfor
mance, shale oil mobility and three-dimensional fracture network in 
future studies. Furthermore, geological evaluation and machine learning 
are strongly recommended to understand the evaluation and simulation 
of unconventional reservoirs. 
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