文章检索
首页» 过刊浏览» 2016» Vol. 1» Issue (3) 407-416     DOI : 10.3969/j.issn.2096-1693.2016.03.036
最新目录| | 过刊浏览| 高级检索
自适应综合指标的化工过程参数报警阈值优化方法研究
罗静,胡瑾秋
中国石油大学(北京)机械与储运工程学院,北京 102249
A study of adaptive composite-indicator alarm threshold optimization of chemical process parameters
LUO Jing, HU Jinqiu
School of Mechanical & Storage and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文:   HTML (1 KB) 
文章导读  
摘要  面临日益复杂的化工过程生产装置,提高化工过程报警系统的性能有着重要的指导意义。传统的化工过程参数报警阈值设置方法一般只考虑误报警,并没有同时考虑误报警和漏报警,导致报警系统产生大量的错误报警。针对上述问题,提出自适应综合指标的报警阈值优化方法。采用核密度估计方法、基于历史数据对过程报警状态进行估计,综合考虑误报警率和漏报警率,从而建立优化报警阈值的目标函数,将数值优化算法内嵌于粒子群算法形成新的算法进行求解。案例分析中将此方法应用于TE过程,结果表明,用此方法设置的报警阈值监测误报率为0,漏报率为0.78%。与传统的3σ法相比,此方法能够在保证低漏报率的条件下有效降低误报警率,提高化工过程报警系统的性能,减轻现场操作人员的工作压力,减少人员生命财产损失。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 自适应; 综合指标; 误报警; 漏报警; 核密度估计; 粒子群算法
Abstract

  Faced with increasingly complex chemical process plants, improving the performance of chemical process alarm systems is important. The traditional chemical process parameters alarm threshold setting method generally considers only false positives, but not taking both false positives and false negatives into account, leading to a lot of false alarms in alarm systems. To solve these problems, we used the alarm threshold optimization method based on an adaptive composite indicator. We used the kernel density estimation method to estimate the state of the process alarm based on historical data, integrating the false positives rate and false negatives rate to establish an objective function for optimal alarm thresholds. The numerical optimization algorithm was embedded in a particle swarm optimization algorithm, forming a new algorithm to solve the function. In case, this method was applied to the TE process. The results showed a false positive rate of 0, and a false negative rate of 0.78%. Compared with the traditional 3σ method, this method can effectively reduce the rate of false positives with a low false negative rate, and improve the performance of the chemical process alarm system. This will reduce stress on site operators, as well as the risks of loss of life and property.

Key words: adaptive ; composite-indicator ; false positives ; false negatives ; kernel density estimation ; particle swarm optimization algorithm
收稿日期: 2016-11-15     
PACS:    
基金资助:
通讯作者: hujq@cup.edu.cn
引用本文:   
罗静,胡瑾秋. 自适应综合指标的化工过程参数报警阈值优化方法研究[J]. 石油科学通报, 2016, 1(3): 407-416. LUO Jing, HU Jinqiu. A study of adaptive composite-indicator alarm threshold optimization of chemical process parameters . 石油科学通报, 2016, 1(3): 407-416.
链接本文:  
版权所有 2016 《石油科学通报》杂志社