文章检索
首页» 过刊浏览» 2018» Vol. 3» Issue (2) 134-143     DOI : doi: 10.3969/j.issn.2096-1693.2018.02.014
最新目录| | 过刊浏览| 高级检索
灰色关联度分析法在筛选页岩含气量主控因素中的应用
张博,姜振学,原园,李微,李耀华
Grey correlation analysis to elucidate the main controlling factors of shale gas content
ZHANG Bo, JIANG Zhenxue, YUAN Yuan, LI Wei, LI Yaohua

全文:   HTML (1 KB) 
文章导读  
摘要  页岩含气量是页岩气资源评价和有利区优选的关键参数,在勘查工作中需要筛选影响含气量的主控因素。但往往因为具备所有实验项目数据的样品非常稀少,所以采用常见筛选方法做主控因素筛选时,样品数据利用率不高,影响筛选结果准确性。本文结合页岩气赋存机理以及实验取得的不同数据参数,提取共计十二种可能控制总含气量的地化参数和储层物性因素,引入灰色模型(Grey Model) 中的关联度分析,针对样品数据不匹配的混沌系统,计算各项形成条件与含气量的灰色邓氏关联度与灰色绝对关联度,并做乘积得相似关联度作为依据筛选出影响总含气量的主控因素,据此建立起总含气量预测模型。对比主成分分析法、欧氏距离分析法的筛选
结果,采用后退线性回归方法对比筛选结果的优劣。灰色关联度分析法筛选的主控因素为黏土矿物含量、S1+S2、孔隙度、总有机碳含量。据此拟合出的线性模型R2为0.878,高于另外两种主流筛选方法。采用该筛选方案做研究区含气量分布图,其预测趋势与实际试井结论符合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 页岩气;含气量;灰色关联度分析;主控因素
Abstract

Gas content is the key parameter of shale gas resource evaluation and favorable area optimization. The main factors controlling gas content need to be considered in exploration. But due to the fact that not each sample can cover all factors, samples which have all kinds of experimental data are rare and the data utilization rate is poor when using common methods in finding out the main controlling factors. Combining with shale gas occurrence mechanisms and all kinds of experimental data, twelve factors that may control the total gas content are selected from geochemical parameters and reservoir properties. By using grey model correlation analysis for the chaos system where sample data does not cover all factors, Deng grey correlation and absolute grey correlation are calculated. we multiplied both together to form a similar grey correlation, and then establish the total gas content prediction model accordingly. Compared with principal component analysis and euclidean distance analysis, we used the linear backward regression method to validate the pros and cons of possible results. This shows that the main controlling factors shown by grey correlation analysis are clay content, S1 + S2, porosity and TOC. The R2 of the linear model is 0.878, which is higher than the other two methods. A gas content distribution map of the study area shows that the trend agrees with the actual well tests.

Key words: shale gas; gas content; grey correlation analysis; main controlling factors
收稿日期: 2018-06-29     
PACS:    
基金资助:国家科技重大专项项目(2011ZX05018-02) 以及国家自然科学基金项目(41472112) 资助
通讯作者:
引用本文:   
张博, 姜振学, 原园, 李微, 李耀华. 灰色关联度分析法在筛选页岩含气量主控因素中的应用. 石油科学通报, 2018, 02: 134-143 ZHANG Bo, JIANG Zhenxue, YUAN Yuan, LI Wei, LI Yaohua. Grey correlation analysis to elucidate the main controlling factors of shale gas content. Petroleum Science Bulletin, 2018, 02: 134-143. doi: 10.3969/j.issn.2096-1693.2018.02.014
链接本文:  
doi: 10.3969/j.issn.2096-1693.2018.02.014
版权所有 2016 《石油科学通报》杂志社