文章检索
首页» 过刊浏览» 2018» Vol. 3» Issue (2) -     DOI : doi: 10.3969/j.issn.2096-1693.2018.02.016
最新目录| | 过刊浏览| 高级检索
基于贝叶斯概率矩阵分解的地震数据重建算法
侯思安,张峰,李向阳
Seismic data reconstruction via a Bayesian probabilistic matrix factorization
HOU Sian, ZHANG Feng, LI Xiangyang

全文:   HTML (1 KB) 
文章导读  
摘要  低秩矩阵分解是一种机器学习算法,近年来该算法在地震数据重建问题中得到了广泛的关注,大量的学者针对模型构建和最优化求解等问题开展了研究。但是精确的求解低秩矩阵分解问题还需要知道规则化参数,而规则化参数又与地震数据体的均值和方差等统计学参数直接相关,又因为数据缺失和随机噪音等因素,这些参数是无法精确获取的。针对这一问题,本文引入了贝叶斯概率矩阵分解算法,通过对均值和方差进行随机模拟,并计算相应的概率密度函数,从而实现自适应的选取最优数据重建结果。合成地震记录和实际地震数据测试表明本文方法可以有效提高地震数据插值重建的精度和稳定性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 数据重建;机器学习;低秩矩阵分解;贝叶斯原理;马尔科夫蒙托卡罗方法
Abstract

Low-rank matrix factorization is a kind of machine learning algorithm. In recent years, the algorithm has received
extensive attention in the problem of seismic data reconstruction. Much research related to model building and numerical
calculations has been published. However, the exact solution of low-rank matrix factorization requires the regularization parameters,
and the regularization parameters are directly related to the statistical parameters such as the mean and variance of the
decomposed seismic data. But these parameters cannot be obtained precisely because of missing data and random noise. In order
to solve this problem, this paper introduces the Bayesian probabilistic matrix factorization algorithm, which simulates the mean
and variance randomly and calculates the optimal reconstruction result by calculating the probability density function. Synthetic
seismic data and real seismic data tests indicate that the proposed method could improve the accuracy and stability of seismic
data reconstruction.

Key words: data reconstruction; machine learning; low-rank matrix factorization; Bayes’s theorem; Markov chain Monte Carlo
收稿日期: 2018-06-29     
PACS:    
基金资助:国家自然科学基金项目(41474096) 和国家科技重大专项(2017ZX05018005) 联合资助
通讯作者: xyl1962@hotmail.com
引用本文:   
链接本文:  
版权所有 2016 《石油科学通报》杂志社