文章检索
首页» 过刊浏览» 2020» Vol.5» Issue(1) 114-121     DOI : 10.3969/j.issn.2096-1693.2020.01.011
最新目录| | 过刊浏览| 高级检索
人工神经网络预测管道冲蚀速率研究进展
王雨墨,李彦博,李晓平,艾迪辉,昝林峰,王维嘉,王孟欣,宫敬
1 中国石油大学( 北京) 油气管道输送安全国家工程实验室/ 城市油气输配技术北京市重点实验室,北京 102249 2 中国石油工程建设有限公司西南分公司,成都 610017
Recent progress on ANN-based pipeline erosion predictions
WANG Yumo, LI Yanbo, LI Xiaoping, AI Dihui, ZAN Linfeng, WANG Weijia, WANG Mengxin,GONG Jing
1 National Engineering Laboratory for Pipeline Safety, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249 , China 2 China Petroleum Engineering CO., LTD. Southwest Company, Chengdu, 610017, China

全文:   HTML (1 KB) 
文章导读  
摘要  本文系统综述了近年来采用人工智能方法对固体壁面受固体颗粒冲击摩擦导致质量损失现象的研究成果,回顾了现有的理论与实验研究结论,分析了人工智能方法的优势及与传统研究方法的互补性。从数据来源的角度分类,讨论了以实验数据为基础及以CFD模拟为基础的人工神经网络方法预测结果。同时,简要介绍了最新的应用支持向量机、随机森林等方法进行冲蚀研究的案例。近年来的研究结果表明,人工智能方法在管道冲蚀现象的研究中具有很高的应用潜力,将在未来管道完整性管理水平的提升及管道智能化建设的加速中发挥重要的作用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 管道冲蚀;人工智能;人工神经网络;管道完整性
Abstract

We systematically review the recent studies on wear and friction of pipeline walls caused by solid particle impact using AI related techniques. We examine the existing theoretical and experimental approaches, and analyze the advantages of Artificial Intelligence methods and their complementarity with classic research methods. According to the classification of data sources, the prediction results of Artificial Neural Networks (ANNs) based on experimental data or CFD simulation are discussed separately. The latest cases of erosion research using Support Vector Machine, Random Forest and other methods are also briefly introduced. Recent research conclusions show that AI method has high potential for application in the prevention of pipeline erosion, and will play an increasingly important role in the improvement of pipeline integrity management and the acceleration of
Intelligent Pipeline Construction in the future.

Key words: pipeline erosion; artificial intelligence; artificial neural network; pipeline integrity
收稿日期: 2020-03-28     
PACS:    
基金资助:国家自然科学基金(51804319)、十三五国家科技重大专项专题(2016ZX05066005-001)、十三五国家科技重大专项课题(2016ZX05037005)、中国石油大学( 北京) 科研基金(2462018YJRC002) 联合资助
通讯作者: lxpmpf@cup.edu.cn
引用本文:   
王雨墨, 李彦博, 李晓平, 艾迪辉, 昝林峰, 王维嘉, 王孟欣, 宫敬. 人工神经网络预测管道冲蚀速率研究进展. 石油科学通报, 2020, 01: 114-121
链接本文:  
WANG Yumo, LI Yanbo, LI Xiaoping, AI Dihui, ZAN Linfeng, WANG Weijia, WANG Mengxin, GONG Jing. Recent progress on ANNbased pipeline erosion predictions. Petroleum Science Bulletin, 2020, 01: 114-121.
版权所有 2016 《石油科学通报》杂志社