文章检索
首页» 过刊浏览» 2020» Vol.5» Issue(1) 26-38     DOI : 10.3969/j.issn.2096-1693.2020.01.003
最新目录| | 过刊浏览| 高级检索
利用卷积神经网络模型预测致密储层微观孔隙结构
廖广志,李远征,肖立志,秦志军,胡向阳,胡法龙
1 中国石油大学( 北京) 油气资源与探测国家重点实验室,北京 102249 2 中国石油大学( 北京) 教育部非常规油气国际合作联合实验室,北京 102249 3 中国石油大学( 北京) 地球探测与信息技术北京市重点实验室,北京 102249 4 中国石油新疆油田勘探开发研究院,克拉玛依 834000 5 中海石油( 中国) 有限公司湛江分公司,湛江 524057 6 中国石油勘探开发研究院测井与遥感技术研究所,北京 100083
Prediction of microscopic pore structure of tight reservoirs using convolutional neural network model
LIAO Guangzhi, LI Yuanzheng, XIAO Lizhi, QIN Zhijun, HU Xiangyang, HU Falong
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 International Joint Laboratory of Unconventional Oil and gas of Ministry of Education, China University of Petroleum-Beijing,Beijing 102249, China 3 Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China 4 Exploration and Development Research Institute of Xinjiang Oilfield Company, PetroChina, Karamay 834000, China 5 Research Institute of Zhanjiang Company, CNOOC Limited, Zhanjiang 524057, China 6 PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

全文:   HTML (1 KB) 
文章导读  
摘要  准确地获取储层微观孔隙结构信息对于复杂油气藏勘探开发非常重要,是储层评价和产能预测的基础。目前常用的孔隙结构表征方法大多数是基于物理实验构建的模型,如压汞、铸体薄片、氮气吸附、核磁共振等。这些观测手段的响应机理存在较大差异,在表征方法、有效分辨率、响应范围等方面各不相同,难以在井下测量并应用。深度学习算法在小样本数据建模及预测方面具有较大应用潜力。本文利用灰色关联分析、主成分分析、因子分析和智能聚类等数据挖掘算法对压汞毛管压力数据等进行深度分析,将研究区块的孔隙结构类型划分为5种类别。然后,将常规测井资料作为输入层,实现了单层卷积神经网络和双层卷积神经网络预测储层微观孔隙结构的方法,并将训练模型应用于测试井。研究结果表明,卷积神经网络可以用于预测储层微观孔隙结构,双层卷积神经网络优于单层神经网络模型。而且通过卷积运算可以提取更深层次、更抽象的储层特征。将预测结果和测井解释反映的孔渗特性进行对比,两者一致性较高。双层卷积神经网络模型在测试集上能达到80%以上的预测精度。研究方法为利用岩心分析数据和测井资料进行储层孔隙结构评价提供了一种新思路,对于复杂油气勘探开发具有重要指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 孔隙结构;数据挖掘;深度学习;卷积神经网络
Abstract

Obtaining accurate information about the microscopic pore structure is very important for the exploration and development of low-porosity and low-permeability oil and gas reservoirs. This information is the basis for productivity prediction and dynamic reservoir simulation. At present, the commonly used pore structure characterization methods are all models based on physical experiments, such as mercury intrusion, thin section, nitrogen adsorption, and nuclear magnetic resonance. These methods are quite different and differ in terms of characterization mechanism, effective resolution and response range, which making it difficult to apply in downhole. Deep learning algorithms have great potential for application in the modeling and prediction of small sample data. In this paper, data mining algorithms such as grey relation analysis, principal component analysis, factor analysis,and intelligent clustering are used to perform deep mining of mercury injection capillary pressure data. The pore structure types of the study block are divided into five categories. Then, using conventional logging data as the input layer, a single-layer convolutional neural network and a double-layer convolutional neural network were used to predict the reservoir's micropore structure, and the training model was applied to the test well. The results show that the convolutional neural network can be used to predict the micro-pore structure of the reservoir. The double-layer convolutional neural network is better than the single-layer neural network model. Furthermore, deeper and more abstract reservoir features can be extracted through convolution operations.The prediction results are compared with the pore permeability characteristics reflected in the log interpretation, and the two are in high agreement. The double-layer convolutional neural network model can achieve a prediction accuracy of more than 80% on the test set. The research method provides a new idea for reservoir pore structure evaluation using core analysis data and logging data, and has important guiding significance for complex oil and gas exploration and development.

Key words: pore structure; data mining; deep learning; convolutional neural network
收稿日期: 2020-03-28     
PACS:    
基金资助:国家自然科学基金(41674137 及51974337),国家油气重大专项(2017ZX05019-002-008)、中国科学院战略先导课题(XDA14020405) 资助
通讯作者: liaoguangzhi@cup.edu.cn
引用本文:   
廖广志, 李远征, 肖立志, 秦志军, 胡向阳, 胡法龙. 利用卷积神经网络模型预测致密储层微观孔隙结构. 石油科学通报, 2020, 01: 26-38
链接本文:  
LIAO Guangzhi, LI Yuanzheng, XIAO Lizhi, QIN Zhijun, HU Xiangyang, HU Falong. Prediction of microscopic pore structure of tight reservoirs using convolutional neural network model. Petroleum Science Bulletin, 2020, 01: 26-38.
版权所有 2016 《石油科学通报》杂志社