文章检索
首页» 过刊浏览» 2020» Vol.5» Issue(3) 420-428     DOI : 10.3969/j.issn.2096-1693.2020.03.036
最新目录| | 过刊浏览| 高级检索
考虑微动磨损的法兰垫片泄漏路径研究
郭岩宝,张政 ,王德国 ,何仁洋
1 中国石油大学(北京)机械与储运工程学院,北京 102249 2 中国特种设备检测研究院,北京 100029
Study of the flange gasket leakage path under fretting wear
GUO Yanbao , ZHANG Zheng , WANG Deguo , HE Renyang
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 China Special Equipment Inspection and Research Institute, Beijing 100029, China

全文:   HTML (1 KB) 
文章导读  
摘要  目前,在能源工程领域,特别是石油和天然气工业,站场和管道是最重要的运输方式。在天然气集输系 统中,站场占有比例较大,其可靠性在很大程度上影响着整个管道系统的安全。由于设备和仪表的多样性,螺 栓—垫片—法兰连接是站场中主要的连接方式。此外,密封垫片是整个系统的核心密封元件,对管道系统的安 全性能至关重要。 在天然气输送的过程中,内部输送介质引起的压力脉动将不可避免地导致管道及连接部位发生小幅度的振 动,造成垫片与法兰密封面的微动磨损,从而降低螺栓—垫片—法兰连接的紧密性和密封性能。通过对常用金属 缠绕垫片的微动磨损试验,观察分析了垫片与法兰密封件界面微动磨损对连接系统微泄漏的影响,并根据密封 面的磨痕尺寸,建立了“米”字形垫片微泄漏路径单元模型。利用FLUENT软件对微动磨损产生的微泄漏路径 单元内部的流体特性进行了数值模拟,探究了不同管道压力和泄漏模式下泄漏过程的变化规律,并通过柔性石 墨壁面的剪力云图分析单元内部通道壁面易受高压介质冲蚀的区域。 结果表明,泄漏模式(泄漏口数量)对泄漏路径单元内流场及流速的分布有较大影响,一级泄漏模式入口流 速较高,但扩散能力相对较弱,三级泄漏模式的出口流速最大;此外,温度变化不会直接影响内部流场变化; 微泄漏路径单元的通道入/出口界面的体积流率均随入口压力的增大而增大;泄漏介质对柔性石墨壁面剪切力的 冲蚀区域随泄漏模式产生相应变化,与其它两种泄漏模式相比,一级泄漏模式的壁面剪应力较大,三级泄漏模式 的最大剪应力出现在中间区域,对石墨壁面的冲蚀作用影响更大。总的来说,考虑微动磨损的法兰垫片泄漏路 径模型一定程度上能够为法兰垫片泄漏模型和评价体系的建立与优化提供参考。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 微动磨损;金属缠绕垫片;泄漏路径;FLUENT;数值模拟
Abstract

  Today, station and pipeline transportation are the most important methods in various energy engineering fields, especially in the oil and gas industry. In the natural gas gathering and transmission system, the gas station has a vital role, and its reliability can affect the safety of the entire pipeline system to a large extent. Due to the diversity of equipment and instruments the bolt-gasket flange connection is the main mode of connection in the gas station. It is well recognized that the gasket is the core sealing element which is critical to the safety performance of the whole pipeline system. In the process of natural gas transportation, pressure pulsations generated in the gas will inevitably cause the pipeline to vibrate a little, and act on the sealing interface of the flange and gasket in the form of fretting wear, thus reducing the tightness and sealing performance of the bolt-gasket-flange connection. Through the fretting wear test of common spiral wound gaskets (SWG), the influence of fretting wear on the interface between SWG and flange seals on the connection was observed and analyzed, and the "star" type gasket micro-leakage path unit was established according to the size effect of wear scars. FLUENT software was used to conduct numerical simulation of the fluid characteristics inside the micro-leakage path unit generated by fretting wear. We explored the variation of the leakage process under different pipeline pressures and leakage modes, and analyzed the areas vulnerable to high-pressure erosion of the internal channel wall through the stress shear cloud diagram of the flexible graphite wall. The results show that the leakage modes (number of leakage ports) has a big impact on the distribution of the flow field and velocity in the leakage path unit. The inlet velocity of the first level leakage mode is high, but the diffusion ability is relative weak. The outlet velocity of the third level leakage mode reaches the maximum. Also, the temperature does not directly affect the change of the internal flow field. The volume flow rate of the channel inlet/outlet interface of the micro-leakage path unit increases with an increase of pressure. Moreover, the erosion region of the shear force on the flexible graphite wall varies with the leakage modes. Compared with the other two leakage modes, the first level leakage mode presents greater wall shear stress. The maximum shear stress of the third level leakage mode occurs in the middle region, and has a greater influence on the erosion of the graphite wall surface. Eventually, the leakage path model under fretting wear can finally provide references for the establishment and optimization of a flange gasket leakage model and evaluation system to a certain extent.   


Key words: fretting wear; spiral wound gasket; leakage path; FLUENT; numerical simulation
收稿日期: 2020-09-29     
PACS:    
基金资助:国家自然科学基金项目(51875578) 和国家重点研发计划项目(2017YFC0805000,2017YFC0805005) 联合资助
通讯作者: gyb@cup.edu.cn
引用本文:   
GUO Yanbao, ZHANG Zheng, WANG Deguo, HE Renyang. Study of the flange gasket leakage path under fretting wear. Petroleum Science Bulletin, 2020, 03: 420-428.
链接本文:  
版权所有 2016 《石油科学通报》杂志社