文章检索
首页» 过刊浏览» 2020» Vol.5» Issue(3) 316-326     DOI : 10.3969/j.issn.2096-1693.2020.03.027
最新目录| | 过刊浏览| 高级检索
粒子群优化的等效基质模量提取和横波预测方法
王国权,陈双全,王恩利,闫国亮 ,周春雷
1 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249 2 中国石油大学(北京)物探重点实验室,北京 102249 3 中石油勘探开发研究院西北分院,兰州 730020
Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization
WANG Guoquan, CHEN Shuangquan, WANG Enli , YAN Guoliang, ZHOU Chunlei
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 State Key Laboratory of Geophysical Exploration, China University of Petroleum-Beijing, Beijing 102249, China 3 Research Institute of Petroleum Exploration & Development-Northwest(NWGI), PetroChina, Lanzhou 730020, China

全文:   HTML (1 KB) 
文章导读  
摘要  常规横波预测方法从基础的岩石物理模型出发,根据部分弹性参数与岩石物理参数间的定量关系,确定 横波速度对应约束参数(如孔隙纵横比)的解空间,不断搜索寻求最优解从而确定地下每一深度点对应的横波速 度。但这样做会存在两点不足:一是简单的遍历搜索制约了预测方法的计算效率;二是对于缺乏矿物含量信息 的井资料而言,岩石物理建模已经严重受限,最终预测结果的精度必然会有很大影响。为了解决这类矿物含量 未知地区进行横波预测所存在的计算精度和效率问题,论文提出基于粒子群非线性优化算法框架下的横波预测 策略。首先需要解决矿物基质模量未知或不准确的问题,即在引入干岩石泊松比σdry后根据岩石骨架模型预设 法,确定其与基质模量K0 的范围,之后利用流体因子定义适应度函数,将矿物基质模量反演转化为二维粒子群 寻优问题,将最终得到的基质模量作为输入更新到粒子群优化的横波预测过程中。使用论文提出的横波预测策 略,可以很好地解决基质模量未知的难题,更好地利用Xu-White、Xu-Payne等岩石物理模型进行储层描述。同 时,论文针对传统方法计算效率低的问题进行了优化,在基质模量反演和横波预测中都采用了粒子群算法来反 演约束参数。实际资料应用结果表明:基于粒子群优化框架下的基质模量反演结果满足Voigt-Reuss界限条件, 验证了算法的正确性及准确度。与传统遍历搜索的横波预测对比结果表明,在精度得到保证的情况下,采用粒 子群优化算法可以大大提升整个横波预测的计算效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 横波预测;粒子群算法;基质模量;碳酸盐岩;孔隙结构
Abstract

Based on the basic petrophysical model and the quantitative relationship between some elastic parameters and petrophysical parameters, the conventional shear wave prediction method determines the solution space of shear wave velocity corresponding to the constraint parameters (such as pore aspect ratio). It constantly searches for the optimal solution to determine the corresponding shear wave velocity at each depth point underground. However, there are two obvious shortcomings: one is that a simple ergodic search restricts the computational efficiency of the shear wave prediction method, and the other is that  petrophysical modeling has been seriously limited for well data which lack mineral content information at the same time. The accuracy of the final prediction result is bound to have a great impact. Therefore, in order to solve the problems of computational  accuracy and efficiency in shear wave prediction in areas with unknown mineral content, a shear wave prediction strategy based on a particle swarm nonlinear optimization algorithm is proposed in this paper. Firstly the whole calculation process needs to solve the problem that the mineral matrix modulus is unknown or inaccurate, that is, after the introduction of the dry rock Poisson ratio σdry, the range of Poisson's ratio and matrix modulus K0 is determined according to the rock skeleton model, and then the fitness function is defined by using the difference between the two kinds of fluid factors, and the inversion problem of mineral matrix modulus is transformed into an optimization problem of a two-dimensional particle swarm. The final matrix modulus is  updated as an input to the shear wave prediction process of particle swarm optimization. Using the shear wave prediction strategy proposed in this paper, we can solve the problem of shear wave prediction when the matrix modulus is unknown, and make better use of Xu-White, Xu-Payne and other petrophysical models for reservoir description. At the same time, the paper optimizes the low computational efficiency of the traditional method, and uses the particle swarm optimization algorithm to invert the constraint parameters in the matrix modulus inversion and shear wave prediction. The application results of practical data show that the inversion results of the matrix modulus based on particle swarm optimization framework still meet the Voigt-Reuss boundary conditions, which verifies the correctness and accuracy of the algorithm. Compared with the traditional ergodic search  shear wave prediction, the results show that whenthe accuracy is guaranteed, the particle swarm optimization algorithm can    greatly improve the computational efficiency of the whole shear wave prediction.    


Key words: shear wave velocity prediction; particle swarm optimization; matrix modulus; carbonate; pore structure
收稿日期: 2020-09-28     
PACS:    
基金资助:国家自然科学基金项目(41574108)、中国石油天然气集团公司科技项目(2019A-3310) 联合资助
通讯作者: chensq@cup.edu.cn
引用本文:   
WANG Guoquan, CHEN Shuangquan, WANG Enli, YAN Guoliang, ZHOU Chunlei. Equivalent matrix modulus extraction and S-wave prediction based on particle swarm optimization. Petroleum Science Bulletin, 2020, 03: 316-326.
链接本文:  
版权所有 2016 《石油科学通报》杂志社