文章检索
首页» 过刊浏览» 2021» Vol.6» Issue(1) 92-113     DOI : 10.3969/j.issn.2096-1693.2021.01.008
最新目录| | 过刊浏览| 高级检索
页岩储层压裂裂缝扩展规律及影响因素研究探讨
史璨,林伯韬
1 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249 2 中国石油大学(北京)石油工程学院,北京 102249
Principles and influencing factors for shale formation
SHI Can, LIN Botao
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China 2 College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China

全文:   HTML (1 KB) 
文章导读  
摘要  油气勘探开发领域从常规油气向非常规油气跨越,是石油工业发展的必然趋势。全球“页岩气革命”推 动页岩气勘探开发技术得到了迅速发展,水力压裂成为页岩气高效开发的关键技术之一。为了实现致密页岩储 层的商业开采,必须通过大规模全井段储层缝网体积改造才能获取经济产能。目前复杂裂缝网络的形态和扩展 规律仍是压裂施工中面临的关键难题,严重制约了页岩气资源的合理开发。本文归纳总结了目前常见的裂缝扩 展规律研究方法并分析了不同方法在研究裂缝扩展规律问题时存在的优缺点。此外,在页岩水力压裂裂缝扩展 的已有实验和数模的研究基础上,从地质和工程因素两个角度分析了对水力裂缝扩展规律的影响,系统总结了 各因素影响下的裂缝扩展规律,取得了如下认识:(1)页岩物理及力学性质影响裂缝的扩展,高脆性,非均质性 强的地层容易形成复杂裂缝网络;(2)地应力是影响裂缝扩展的最主要因素,决定了裂缝扩展的方向与裂缝形 态;(3)页岩储层中的天然弱面(层理与天然裂缝等)是产生复杂裂缝的重要原因,其弱面性质、产状以及地应力 共同决定了裂缝能否穿过弱面扩展;(4)高施工排量和高黏度可以有效增加储层的压裂改造范围,但是裂缝复杂 程度低;(5)射孔方式能影响裂缝复杂程度,螺旋射孔得到的裂缝形态最复杂,平面射孔的裂缝形态最简单。通 过实验和数模可以研究特定地层和施工条件下的裂缝扩展规律,但是无法满足现场真实情况下的复杂裂缝网络 的裂缝扩展规律的研究。未来对于页岩储层裂缝扩展规律的研究仍然以实验和数值模拟方法为主,不断改进和 完善复杂裂缝网络的模拟,同时大力发展裂缝形态监测技术,更加准确的描述实验和现场压裂裂缝的形态。此 外积极探索研究裂缝扩展规律的新方法,为我国非常规页岩油气资源的勘探开发提供强有力的储层改造理论保 障。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 页岩气;页岩油;压裂;裂缝扩展;人工智能
Abstract
It is an inevitable trend for the oil and gas industry to transform the exploration & development domain from conven   tional hydrocarbon accumulations to unconventional hydrocarbon ones. The global "shale gas revolution" has promoted shale gas    exploration and development technology, and hydraulic fracturing has become one of the critical technologies for efficient shale    gas & oil development. Field research on the morphology and propagation of complex fracture-networks in fracturing shale oil    & gas reservoirs is still a fundamental problem, which seriously restricts rational development of shale gas resources. This article    summarizes the current standard research methods into fracture propagation and analyzes the advantages and disadvantages of    different methods. In addition, based on existing experiments and mathematical models, this paper analyzed the influence on    hydraulic fracture propagation from geological and engineering factors. It systematically summarized fracture propagation under    the influence of various factors. The following understandings have been obtained: (1) The physical and mechanical properties    of shale affect the propagation of fractures, and highly brittle and heterogeneous formations are prone to form complex fracture    
networks; (2) In-situ stress is the most critical factor influencing fracture propagation, which determines the morphology and    propagation of fracture; (3) Weak-side surfaces (bedding and natural fractures, etc.) in shale reservoirs are important causes of    complex fractures, and the properties of the surface, appearance, and in-situ stress difference determine whether the fracture can    propagate through the weak-side surface; (4) High displacement and high viscosity can increase fracturing reconstruction range,    but the complexity of fractures is low; (5) The shape of the crack obtained by spiral perforation is the most complicated, and the    form of the planar perforation is the simplest. Although current experimental and numerical simulation research can describe the    fracture propagation under the influence of specific formation and construction conditions to a certain extent, it still cannot satisfy    the research on the fracture propagation of complex fracture networks under natural formation situations. In future, research    into the fracture propagation in shale reservoirs will continue to improve the experimental and digital simulation methods to    simulate complex fracture networks. Simultaneously, it is important to develop research on new hydraulic fracture monitoring    
technologies to describe fracture morphology more accurately. At the same time, we should actively explore other methods to    
better understand unconventional shale in China. The exploration and development of shale oil and gas resources provides a    
robust theoretical guarantee for reservoir reconstruction.  


Key words: shale gas; shale oil; hydraulic fracturing; fracture propagation; artificial intelligence
收稿日期: 2021-03-31     
PACS:    
基金资助:国家科技重大专项“大型油气田及煤层气开发”课题 4“页岩气排采工艺技术与应用”( 编号:2017ZX05037-004) 资助
通讯作者: lin_cupb@163.com
引用本文:   
SHI Can, LIN Botao. Principles and influencing factors for shale formations. Petroleum Science Bulletin, 2021, 01: 92-113.
链接本文:  
版权所有 2016 《石油科学通报》杂志社