文章检索
首页» 过刊浏览» 2021» Vol.6» Issue(1) 58-66     DOI : 10.3969/ j.issn.2096-1693.2021.01.005
最新目录| | 过刊浏览| 高级检索
闭塞湖盆页岩油储层测井岩性综合评价技术
刘俊东 ,蒲秀刚,常静春,郝丽萍 ,徐明,袁雪花,李进
1 中国石油集团测井有限公司天津分公司,天津 300280 2 中国石油股份有限公司大港油田分公司,天津 300280
Logging of a shale oil reservoir in a closed lake basin: A comprehensive lithology evaluation technique
LIU Jundong, PU Xiugang , CHANG Jingchun, HAO Liping, XU Ming , YUAN Xuehua , LI Jin
1 Tianjin Branch, China Petroleum Logging Co. LTD. , Tianjin 300280, China 2 Dagang Oilfield Branch of PetroChina Company Limited, Tianjin 300280, China

全文:   HTML (1 KB) 
文章导读  
摘要  渤海湾盆地沧东凹陷孔二段属于封闭型陆相湖盆沉积,横向分布广泛、纵向分布稳定,烃源岩品质好, 页岩油资源丰富。孔二段页岩油储层岩性多样、薄互层特征明显,且细粒沉积物发育,矿物成分复杂,利用常 规测井资料开展岩性定性识别及矿物含量定量计算困难。本文综合分析地质、岩心资料,确定了目标区块页岩 油储层的主要岩石类型,分别为长英质页岩、碳酸质页岩、混合质页岩和黏土岩。岩心分析和测井资料结合, 明确了不同岩石类型在电成像及常规测井资料上的响应特征。优选深电阻率、补偿密度及补偿声波测井曲线, 提出了“补偿声波密度差值—深电阻率比值交会图”的岩石类型定性识别方法,有效提高了页岩油储层岩性识 别准确率,并实现了岩石类型分类连续自动判别。针对目标区块页岩岩性复杂、矿物成分多样,常规的矿物含 量计算方法与实际差异较大的难题,根据研究区块X衍射全岩分析资料,确定页岩油储层主要矿物为长英质(石 英和长石)、碳酸盐岩(方解石和白云石)、黏土,由此建立相应矿物体积模型,利用补偿声波、补偿密度、补偿 密度与补偿中子归一化差值、深电阻率、自然伽马、补偿中子等敏感曲线,采用多元逐步回归的方法开展碳酸 盐岩、黏土矿物含量计算,通过三次多元回归使得碳酸盐岩和黏土矿物含量计算精度明显提升,在此基础上形 成了适合研究区块的页岩油储层矿物含量定量计算测井解释模型,利用该解释模型计算的矿物含量与岩心分析 结果一致性较高。所形成的方法有效解决了页岩油储层岩性评价难题,提高了利用常规测井资料进行岩性评价 的精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 页岩油;测井评价;岩石类型;岩性评价;定性识别;多元逐步回归;矿物含量计算
Abstract
The second member of the Kongdian formation (Ek   2   ) in the Cangdong Sag of the Bohai Bay Basin is a closed con   tinental lacustrine basin deposit with extensive horizontal distribution and stable vertical distribution, good source rock quality,    and rich shale oil resources. The Ek   2   shale oil reservoir has diverse lithology, which has obvious features of thin inter layering with    fine grained sediments. It has developed very well, and has complex mineral compositions so it is difficult to use conventional    logging data to carry out qualitative lithologic identification and mineral content calculation. In this paper, the main rock types    of shale oil reservoirs in the target block are felsic shale, calcareous shale, mixed shale, and clay stone. These were determined    by comprehensive analysis of geological and core data. By combining core analysis and logging data analysis, the response    characteristics of different rock types on micro resistivity imaging logging and conventional logging data are defined. Optimizing    the deep resistivity, compensation density and compensated sonic logging curves, and proposing a qualitative identification method    for rock types of “   φDT   -   φDEN   &   R   t   /   R   sh   ” cross plot, effectively improved the accuracy of shale oil reservoir lithology identification,    and realized continuous automatic discrimination of rock type classifications. In view of the complicated shale lithology and diverse    mineral composition in the target block, as well as the large difference between the conventional mineral content calculation method    
and the actual situation, according to the X-ray diffraction analysis data of rock samples from the target block, it is determined that    the main minerals of the shale oil reservoir are felsic minerals (quartz and feldspar), carbonate minerals (calcite and dolomite), and    clay. From this, the corresponding mineral volume model is established, using compensated acoustic wave logging, compensation    density, normalized difference between compensation density and compensated neutron logging, deep resistivity, natural gamma and    other sensitive curves. The calculation of the content of carbonate rock and clay minerals is carried out using the method of multiple    stepwise regression, and the calculation accuracy of the content of carbonate rock and clay minerals is significantly improved    through three multiple regressions. On this basis, a logging interpretation model which is suitable for quantitative calculation of    shale oil reservoir mineral content in research blocks is derived. The mineral content calculated by this interpretation model is highly    consistent with the core analysis results. The developed method effectively solves the difficult problem of lithology evaluation of    shale oil reservoirs and improves the accuracy of lithology evaluation using conventional logging data.  


Key words: shale oil; logging evaluation; rock types; lithology evaluation; qualitative identification; multiple stepwise regression; mineral content calculation
收稿日期: 2021-03-31     
PACS:    
基金资助:
通讯作者: changjc@cnpc.com.cn
引用本文:   
LIU Jundong, PU Xiugang, CHANG Jingchun, HAO Liping, XU Ming, YUAN Xuehua, LI Jin. Logging of a shale oil reservoir in a closed lake basin: A comprehensive lithology evaluation technique. Petroleum Science Bulletin, 2021, 01: 58-66.
链接本文:  
版权所有 2016 《石油科学通报》杂志社