文章检索
首页» 过刊浏览» 2024» Vol.9» lssue(3) 476-486     DOI : 10.3969/ j.issn.2096-1693.2024.03.035
最新目录| | 过刊浏览| 高级检索
渗透率各向异性对地热电池高效储能发电系统的影响
甘泉, 刘艳婷, 马跃强, 汪涛, 胡大伟, 郅胜
1 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044 2 重庆大学资源与安全学院,重庆 400044 3 中国科学院武汉岩土力学研究所,武汉 430071 4 中国华融国际控股有限公司,香港 999077
Influence of permeability anisotropy on high-efficiency energy storage power generation system of geothermal battery
GAN Quan, LIU Yanting, MA Yueqiang, WANG Tao, HU Dawei, ZHI Sheng
1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China 2 School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China 3 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 4 Huarong International Financial Holdings Limited, Hong Kong 999077, China

全文:   HTML (1 KB) 
文章导读  
摘要  在当前能源转型的大背景下,清洁能源利用的创新技术市场日益扩大。地热电池储能发电技术有望解决太阳能、风能等可再生能源间歇性问题,受到清洁能源领域的关注。地热电池储能系统利用沉积地层中形成的低渗透率、低孔隙度的盖层和基层以及高渗透率、高孔隙度的中间储层实现热水的储存。这些热水创造了一个高温地热储层,已有研究表明这些储热可以高效回收,甚至可能实现长期甚至季节性的存储。在沉积结构中,其物理特征等方面存在十分明显各向异性,其中渗透率各向异性在流体的流动过程中发挥着重要作用。因此,研究渗透率各向异性对储能产能的影响至关重要。本研究利用TOUGHREACT-FLAC3D耦合软件建立了地热储能温度场—渗流场—应力场(THM)多场耦合模型,模拟了4 种渗透率各向异性的情况,并分析了4 种条件下热水注入和生产中热水流动路径、温度和压力的分布以及发电效率。结果表明:(1)渗透率各向异性对注采过程中压力的演变有强烈的影响,压力锋面在渗透率大的方向快速移动,而且各向异性越小,储层等效渗透率越大,注入热水需要的压力越小。(2)热水流动优先在渗透率大的方向流动,温度和压力的传播与热水流动方向一致,但是温度分布主要由流体流动的方向决定,在流动过程中热水用于加热初始环境中较冷的岩石和水造成热量损失,所以渗透率各向异性对储层温度的分布情况影响较小。(3)储层的岩石在高温热水的作用下发生膨胀,其孔隙压力恢复值随温度的升高逐渐高于储层初始的孔隙压力(12 MPa)。(4) 在进行的30 个注采循环结束后渗透率各向异性为1000 时产生的电量最高可以达到5.2 MW。因此,在地热电池储能系统进行选取时,选择水平方向与垂直方向渗透率各向异性大的储层产能效率更高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 地热电池,渗透率各向异性,地热储能,可再生能源,数值模拟
Abstract

In the context of the current energy transition, the market for innovative technologies for clean energy utilization is growing. Geothermal battery storage power generation technology is expected to solve the problem of intermittency of renewable energy sources such as solar and wind power, and is attracting attention in the clean energy field. Geothermal battery energy storage system uses the low permeability, low porosity cap and base layers and the high permeability, high porosity intermediate reservoirs formed in the sedimentary strata to realize the storage of hot water. This hot water creates a high-temperature geothermal reservoir, and it has been shown that this stored heat can be efficiently recovered and may even enable long-term or even seasonal storage. In sedimentary structures, there are very obvious anisotropy in their physical characteristics and other aspects, among which permeability anisotropy plays an important role in the flow process of fluids. Therefore, it is crucial to study the effect of permeability anisotropy on energy storage capacity. In this study, a multi-field coupled model of temperature-percolation-stress field (THM) for geothermal energy storage was developed using TOUGHREACT-FLAC3D coupling software to simulate four permeability anisotropies and analyze the hot water flow paths, temperature and pressure distributions, and power generation efficiency. The results showed that: (1) permeability anisotropy has a strong influence on the evolution of pressure during injection and production, pressure fronts move rapidly in the direction of high permeability and the lower the anisotropy the larger equivalent permeability the lower the pressure required to inject hot water. (2) Hot water flows preferentially in the direction of large permeability, and the propagation of temperature and pressure is consistent with the direction of hot water flow, but the temperature distribution is mainly determined by the direction of fluid flow, and hot water is used to heat up the colder rocks and water in the initial environment during the flow process resulting in heat loss, so the permeability anisotropy has less effect on the distribution of temperature in the reservoir. (3) The rock of the reservoir expands under the action of high-temperature hot water, and its pore pressure recovery value is gradually higher than the initial pore pressure of the reservoir (12 MPa) with the increase of temperature. (4) At the end of the 30 injection cycles, the maximum power generated at an anisotropy of 1000 permeability can reach 5.2 MW. Therefore, when selecting the geothermal cell storage system, the reservoir with a large permeability in the horizontal direction is more efficient.


Key words: geothermal battery; permeability anisotropy; geothermal energy storage; renewable energy storage; numerical simulation
收稿日期: 2024-06-28     
PACS:    
基金资助:科技部重点研发计划(2021YFC3000603)、国家自然科学基金委面上项目(5217041034)、四川省重点项目(2022YFSY0008)、中国石油科技创新基金(2023DQ02-0206) 和中国博士后科学基金第72 批面上资助(2022M720555) 联合资助
通讯作者: wangtao.oil@cqu.edu.cn
引用本文:   
甘泉, 刘艳婷, 马跃强, 汪涛, 胡大伟, 郅胜. 渗透率各向异性对地热电池高效储能发电系统的影响. 石油科学通报, 2024, 03: 476-486 GAN Quan, LIU Yanting, MA Yueqiang, WANG Tao, HU Dawei, ZHI Sheng. Influence of permeability anisotropy on high-efficiency energy storage power generation system of geothermal battery. Petroleum Science Bulletin, 2024, 03: 476-486.
链接本文:  
版权所有 2016 《石油科学通报》杂志社