文章检索
首页» 过刊浏览» 2021» Vol.6» Issue(1) 31-45     DOI : 10.3969/j.issn.2096-1693.2021.01.003
最新目录| | 过刊浏览| 高级检索
非常规油气储层脆性评价与预测方法研究进展
曹东升,曾联波,吕文雅,徐翔,田鹤
1 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249 2 中国石油大学(北京)地球科学学院,北京 102249
Progress in brittleness evaluation and prediction methods in unconventional reservoirs
CAO Dongsheng, ZENG Lianbo, LYU Wenya, XU Xiang, TIAN He
1 State Key Laboratory of Petroleum Resource and Prospecting in China University of Petroleum-Beijing, Beijing 102249, China 2 College of Geoscience, China University of Petroleum-Beijing, Beijing 102249, China

全文:   HTML (1 KB) 
文章导读  
摘要  脆性对深层岩体工程和资源开发利用,特别是非常规油气资源开发具有重要意义。本文从脆性的内涵和 影响因素入手,总结分析了脆性评价和预测的基本原理及研究进展。岩石的岩性组分、层理和损伤等结构特征、 孔隙流体及其赋存状态、围压、温度、岩体测量尺度以及受力过程等都会对脆性有影响。高脆性非常规油气储 层具有脆性矿物含量高、杨氏模量大、破裂前总应变小、应力—应变曲线峰前阶段耗散能以及峰后阶段断裂能 小、低延性、内摩擦角大、破裂后易形成复杂缝网系统的特征。非常规油气储层脆性研究应该重点关注地层的 可压性和形成复杂缝网系统的能力。按照评价资料类型,脆性评价主要有力学试验评价和基于测钻井资料评价 两种方法,脆性预测主要通过叠前地震反演。脆性各向异性及主控因素研究有利于不同类型非常规储层评价预 测方法的优选和改进。不同资料脆性研究思路和方法不同,适用性也有差异,多资料多方法相互融合、相互验 证是未来重要发展方向。人工智能包括机器学习等算法可以有机融合多元数据,充分挖掘有效信息,具有更加 高效精确的优势,在非线性多因素控制的脆性研究中,发展潜力较大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 非常规油气储层;脆性影响因素;脆性评价方法;脆性预测方法;脆性研究进展
Abstract
Brittleness is of great significance for deep rock engineering and resource development, especially for unconventional    oil and gas resources. Brittleness evaluation, fundamental principles of its prediction and research progress are summarized and    analyzed. The structural characteristics of rock such as lithologic composition, bedding and damage, pore fluid and its occurrence    characteristics, confining pressure, temperature, rock mass measurement scale, and stress path all impact brittleness. High    brittleness unconventional reservoirs are characterized by a high content of brittle minerals, high Young's modulus, small total    strain before fracture, dissipated energy in the pre-peak stage of the stress-strain curve, little fracture energy in the post-peak    stage, low ductility, large internal friction angle and easy formation of complex fracture network systems in hydraulic fracturing.    Unconventional reservoir brittleness research should focus on the formation frangibility and the ability to form complex fracture    network systems. According to the types of data, brittleness evaluation methods mainly include mechanical experiment evalua   tion and evaluation based on logging and drilling data. Brittleness prediction is mainly based on prestack seismic inversion. The    study of brittleness anisotropy and controlling factors help optimize and improve evaluation and prediction methods for different    types of unconventional reservoirs. Due to the different research ideas and data sources, the applicability of different methods    is also different. The integration and mutual verification of multiple data and methods is an important future development    direction. Artificial intelligence, including machine learning algorithms, can organically integrate multiple data, collate effective    information, and has the advantage of being more efficient and accurate. Artificial intelligence is promising in geological research    controlled by multiple nonlinear factors such as reservoir brittleness.  
Key words: unconventional reservoir; factors affecting brittleness; brittleness evaluation method; brittleness prediction method; progress in brittleness research
收稿日期: 2021-03-31     
PACS:    
基金资助:国家自然科学基金委员会—中石化联合基金“页岩油气甜点预测的储层地质力学基础理论研究”(U1663203) 资助
通讯作者: lbzeng@sina.com
引用本文:   
CAO Dongsheng, ZENG Lianbo, LYU Wenya, XU Xiang, TIAN He. Progress in brittleness evaluation and prediction methods in unconventional reservoirs. Petroleum Science Bulletin, 2021, 01: 31-45.
链接本文:  
版权所有 2016 《石油科学通报》杂志社