文章检索
首页» 过刊浏览» 2021» Vol.6» Issue(3) 356-368     DOI : 10.3969/j.issn.2096-1693.2021.03.029
最新目录| | 过刊浏览| 高级检索
南华北盆地山西组砂岩的气体来源、成岩阶段与成藏过程研究
刘瑞,郭少斌,屈凯旋,郭予斌
中国地质大学(北京)能源学院,北京 100083
Study of gas source, diagenesis stage and accumulation process of the sandstone of the Shanxi Formation in the southern north China Basin
LIU Rui, GUO Shaobin, QU Kaixuan, GUO Yubin
School of Energy Resources, China University of Geosciences-Beijing,Beijing 100083, China

全文:   HTML (1 KB) 
文章导读  
摘要  为了系统深入的研究南华北盆地太康隆起和蚌埠隆起上古生界山西组砂岩的气体来源、成岩阶段与成藏 过程,本文采用伊利石的结晶度、流体包裹体岩相学、显微激光拉曼测试技术,结合稀有气体同位素,对砂 岩的成岩阶段,致密砂岩气体的成藏过程、气体来源和贡献率进行了详细的研究。砂岩中伊利石结晶度介于 0.64~1.06(△2θ)之间,指示早—中成岩阶段;I/S混层中蒙皂石含量范围为 0%~50%,指示中成岩阶段A-B期; 流体包裹体均一温度分布在 110~120 ℃和 130~150 ℃两个范围内,同样指示中成岩阶段A-B期。综合伊利石的 结晶度、I/S混层中蒙皂石含量和古温度三种研究方法,共同界定南华北盆地山西组致密砂岩成岩作用阶段为中 成岩阶段A-B期。通过流体包裹体岩相学观察结合显微激光拉曼测试技术,准确确定包裹体的类型、成分和世 代关系等,确定油气成藏期次为 1 期。利用含烃盐水包裹体的均一温度,将之“投影”到附有古地温演化的埋 藏史图中,确定山西组致密砂岩气的成藏时间为印支期末期—燕山期早期。利用稀有气体同位素 40Ar/36Ar值, 计算气源岩年龄,确定山西组致密砂岩中的天然气来自于石炭—二叠纪。按照泥页岩、煤岩二端元混合模型, 计算了不同烃源岩产生的天然气对砂岩样品中天然气的贡献率,结果表明南华北盆地山西组致密砂岩中天然气 的主力烃源岩为煤系泥页岩,贡献率约为 73.5%;煤岩在整个生烃过程中发挥次要作用,贡献率约为 26.5%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 成岩阶段;成藏;致密砂岩气;稀有气体同位素;南华北盆地
Abstract
In order to systematically and deeply study the gas source, diagenesis stage and accumulation process of the upper  
Paleozoic Shanxi Formation in Taikang and the Bengbu Uplift in the Southern North China Basin, this paper adopted the crystal
linity of illite, fluid inclusion petrography, and Micro-Laser Raman, combined with rare gas isotopes, which provides a detailed  
study of the diagenesis stage of sandstone, the accumulation process of tight sandstone gas and its source and contribution rate.  
The crystallinity of illite in the sandstone ranges from 0.64 to 1.06 ( 2θ), indicating an early to middle diagenesis stage. The
smectite content in the I/S mixed layer ranges from 0 to 50 % , indicating a middle diagenetic stage A-B. The temperature of fluid  
inclusions is in two ranges of 110~120 ℃ and 130~150 ℃, which also indicates in the middle diagenetic stage A-B. Integrating  
the three research methods of illite crystallinity, smectite content in mixed layer I/S and paleo-temperature, the diagenesis  
stage of tight sandstone in the Shanxi Formation is in the middle diagenetic stage A-B. Through fluid inclusion petrographic  
observations combined with Micro-laser Raman testing, the type, composition, and generation relationship of the inclusions  
are accurately determined, and there is only one hydrocarbon accumulation period. Using the homogenization temperatures  
of the hydrocarbon-bearing brine inclusions, “projecting” these onto the burial history map with paleotemperature evolution,  
the accumulation time of tight sandstone gas in the Shanxi Formation is determined to be the end of the Indosinian to the early  
Yanshan period. By using rare gas isotope 40 Ar/ 36 Ar values to calculate the age of the gas source rock, it is determined that the  
natural gas in tight sandstone in the Shanxi Formation comes from the Carboniferous-Permian. According to the mud shale and  
coal rock two-end-member mixing model, the contribution rate of natural gas produced by different source rocks to natural gas in  
sandstone samples was calculated. The results indicate that the main source rock of natural gas in tight sandstone of the Shanxi  
Formation in the southern north China Basin is the mud shale, and the contribution rate of shale is about 73 % . Coal rock plays a  
secondary role in the entire hydrocarbon generation process, and the contribution rate is about 27 % .


Key words: diagenesis stage; accumulation; tight sandstone gas; rare gas isotope; southern north China Basin
收稿日期: 2021-09-29     
PACS:    
基金资助:国家科技重大专项“不同类型页岩气生成机理及富集规律研究”(2016ZX05034-001) 资助
通讯作者: guosb58@126.com
引用本文:   
刘瑞, 郭少斌, 屈凯旋, 郭予斌. 南华北盆地山西组砂岩的气体来源、成岩阶段与成藏过程研究. 石油科学通报, 2021, 03: 356-368 LIU Rui, GUO Shaobin, QU Kaixuan, GUO Yubin. Study of gas source, diagenesis stage and accumulation process of the sandstone of the Shanxi Formation in the southern north China Basin. Petroleum Science Bulletin, 2021, 03: 356-368.
链接本文:  
版权所有 2016 《石油科学通报》杂志社