文章检索
首页» 过刊浏览» 2023» Vol.8» Issue(6) 832-844     DOI : 10.3969/j.issn.2096-1693.2023.06.076
最新目录| | 过刊浏览| 高级检索
基于深度残差网络的接转站工艺流程异常工况诊断
张蕊, 侯磊, 刘珈铨, 孙省身, 张坤, 杜鑫, 李兴涛
1 中国石油大学( 北京) 机械与储运工程学院,北京 102249 2 中国石油长庆油田分公司长庆工程设计有限公司,西安 710021 3 中国石油长庆油田分公司第十二采油厂,合水 745000 4 中国石油国际勘探开发有限公司,北京 102249
Abnormal operation condition diagnosis of block station based on deep residual network
ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao
1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China 2 Changqing Engineering Design Co., Ltd , PCOC, xi’an 710021,China 3 PetroChina ChangQing Oilfield Company No.12 Oil Production Plant, Heshui 745000, China 4 China National Oil and Gas Exploration and Development Co., Beijing 102249, China

全文:   HTML (1 KB) 
文章导读  
摘要  油气集输站场是油气田地面工程的核心部分。接转站作为集输系统的重要节点,既有设备集中、运行连续性强的生产特点,还容易出现来流比例剧烈波动和设备运行故障等工况异常。接转站运行工况的诊断对油气生产系统至关重要,对于简单设备的异常数据,站场员工尚能进行初步诊断,但对整个站场的大量SCADA实时监测数据,仅靠经验和知识难以实现快速分析处理。与油田现有的阈值报警方法相比,基于数据驱动的诊断方法更加准确智能。在数据驱动的方法中,深度学习方法能够自动提取数据非线性特征,善于处理海量高维数据。根据某油田接转站数据采集与监视控制系统(SCADA)数据的多元时间序列特性,提出一种基于深度残差网络(DRN)的诊断方法,以接转站SCADA系统监测数据为模型输入,工况类别为模型输出建立诊断模型,对接转站异常工况进行分类识别。现场数据的噪声会降低模型对少数类样本的识别能力,通过小波分解对接转站数据进行降噪处理,减弱设备采集干扰,增强模型诊断性能;采用朴素重采样进行数据扩容,缓解现场数据样本量不足,模型难以训练问题;利用正则化方法对大数值权重向量进行惩罚,避免模型对个别变量的依赖。在此基础上提出8 种不同DRN架构,确定适用于接转站的最优诊断模型,通过多元互信息值法量化各类样本间的相关程度,证明诊断结果的有效性。油田现场的实际数据验证表明,该方法能够用于对接转站工艺流程运行状况进行快速准确的诊断,诊断准确率达97.3%,显著高于支持向量机(93%)、多层感知机(65%)等经典机器学习方法。该诊断方法对其他油气站场的故障诊断和异常识别具有指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 工况诊断,集输工艺,接转站,深度残差网络,小波降噪
Abstract

Oil and gas gathering station is the core part of oilfield ground engineering construction. As the important link of gathering and transportation system, the block station has the production characteristics of centralized equipment and successional production chain, and it is also prone to severe fluctuation of the inflow proportion and equipment operation faults. The diagnosis of the operation condition for block station is crucial to the oil and gas production system, for the abnormal data of simple equipment, the station staff can make a preliminary diagnosis, but for a large number of real-time SCADA monitoring data of the whole station, it is difficult to realize rapid analysis and processing only by experience and knowledge. Compared with the existing threshold alarm method in oil field, data-driven diagnostic approach is more accurate and intelligent. Among the data-driven methods, deep learning method which is good at processing massive high-dimensional data, can automatically extract the nonlinear features of data. Aimed at multiple time series characteristics of data (SCADA) in block station, a fault diagnosis method is proposed by use deep residual network (DRN). In order to identify and classify the abnormal working conditions of block station, a diagnostic model was established by taking 36 monitoring variables of the SCADA system in block station as model input and 5 working conditions as model out. The noise of field data will reduce the ability of the model to identify the working conditions with fewer samples, wavelet decomposition is used to de-noise the data of the block station to reduce the interference of equipment acquisition, enhance model diagnostic performance. Naive resampling is used to enlarge the data capacity to alleviate the difficulty in training the model caused by insufficient sample size of field data. The regularization method is used to punish the weight vector with large values to avoid the dependence of the model on individual variables. On this basis, eight different DRN architectures has proposed to select the optimal diagnostic model for the block station, and the correction between various samples is quantified according to the mutual information method, ensured the validity of the diagnosis results. Verification of real data in field shows that the method can be used quickly and accurately diagnose process status of block station. The average accuracy is 97.3%, which are significantly higher than other machine learning method like support vector machine (93%) and multilayer perceptron (65%). The method has guiding significance for fault diagnosis and anomaly identification of other oil and gas stations.

Key words: operation conditions diagnosis; gathering and transportation process; block station; deep residual network; Wavelet Denoising
收稿日期: 2023-12-29     
PACS:    
基金资助:中国石油天然气集团有限公司—中国石油大学( 北京) 战略合作科技专项:“一带一路”海外长输管道完整性关键技术研究与应用
(ZLZX2020-05) 资助
通讯作者: houleicup@126.com
引用本文:   
张蕊, 侯磊, 刘珈铨, 孙省身, 张坤, 杜鑫, 李兴涛. 基于深度残差网络的接转站工艺流程异常工况诊断. 石油科学通报, 2023, 06: 832-844. ZHANG Rui, HOU Lei, LIU Jiaquan, SUN Xingshen, ZHANG Kun, DU Xin, LI Xintao. Abnormal operation condition diagnosis of block station based on deep residual network . Petroleum Science Bulletin, 2023, 05: 832-844.
链接本文:  
版权所有 2016 《石油科学通报》杂志社