文章检索
首页» 过刊浏览» 2024» Vol.9» lssue(3) 365-382     DOI : 10.3969/j.issn.2096-1693.2024.03.027
最新目录| | 过刊浏览| 高级检索
地质力学参数智能预测技术进展与发展方向
马天寿, 张东洋, 陆灯云, 谢祥锋, 刘阳.
1 西南石油大学油气藏地质及开发工程全国重点实验室,成都 610500 2 中国石油川庆钻探工程有限公司,成都 610501 3 西南石油大学石油天然气装备教育部重点实验室,成都 610500
Progress and development direction of intelligent prediction technology of geomechanical parameters
MA Tianshou, ZHANG Dongyang, LU Dengyun, XIE Xiangfeng, LIU Yang
1 National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2 CNPC Chuanqing Drilling Engineering Co. Ltd., Chengdu 610051, China 3 MOE Key Laboratory of Oil & Gas Equipment, Southwest Petroleum University, Chengdu 610500, China

全文:   HTML (1 KB) 
文章导读  
摘要  随着人工智能技术在油气勘探领域应用的不断深入,地质力学参数预测从传统方法向智能化转型已成为必然趋势。本文系统归纳分析了机器学习算法在岩石力学参数直接与间接预测,地层孔隙压力钻前预测、随钻监测和钻后评估,一维地应力和三维地应力场预测中的应用现状,对比了不同预测任务下的机器学习模型、输入参数、样本数据量、输出参数以及模型预测性能。研究发现:相比于室内试验、现场测试和经验模型计算,机器学习算法在地质力学参数预测方面的准确性、时效性和适用性具有明显优势;集成模型、深度学习模型和物理约束神经网络模型凭借其准确性、鲁棒性、泛化能力和可解释性,已成为当前研究的热点和重点;但现有研究以一维地质力学参数的钻后预测为主,因而无法有效进行钻前和随钻三维地质力学参数预测。为了加快地质力学参数向智能化、数字化转型,本文提出了一种地质力学参数智能预测框架,该框架考虑地震、测井、录井等多源数据对地质力学参数预测的影响,通过数据+物理双驱动的机器学习模型进行三维地质力学参数的预测,并通过正钻井数据进行模型的实时更新,从而实现区域三维地质力学参数的钻前预测、随钻监测以及钻后评估。此外,分析了地质力学参数智能预测面临的关键技术难题:①实现非结构化数据类型的转换,降低数据集复杂度,确保数据的一致性和可比性;②开展多源数据融合研究,构建包括地震、测井、录井、室内试验、现场测试等方面的多源数据集,并进行数据处理、特征选择等工作;③加强机器学习模型研究以提升性能,采用集成模型提升预测精度,融入机理模型和领域知识提升模型鲁棒性和可解释性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 地质力学,智能预测,机器学习,岩石力学,地层压力,地应力
Abstract

The progressive application of artificial intelligence technology within oil and gas exploration has resulted in an inevitable shift towards the transformation of geomechanical parameter prediction from a traditional to an intelligent approach. This paper presents a comprehensive review and critical analysis of machine learning algorithms in the direct and indirect prediction of rock mechanics parameters, pre-drilling prediction, monitoring while drilling and post-drilling evaluation of formation pore pressure, 1D in-situ stresses and 3D in-situ stresses field prediction. Furthermore, the paper compared machine learning models, input parameters, sample data volume, output parameters, and model prediction performance under different tasks. It has been demonstrated that machine learning algorithms exhibit superior performance in terms of accuracy, timeliness, and applicability in geomechanical parameter prediction compared to laboratory tests, field tests, and empirical model calculations. The current research emphasis is on hybrid models, deep learning models, and physical-constrained neural network models, which have been validated as highly accurate, robust, capable of generalization, and easily interpretable. However, the existing research primarily concerns the prediction of 1D geomechanical parameters post-drilling. Consequently, it is not possible to effectively predict 3D geomechanical parameters prior to drilling or during the drilling process. In order to facilitate the digital and intelligent transformation of geomechanical parameters, an intelligent prediction framework for geomechanical parameters is proposed in this paper. This framework considers the influence of multi-source data, including seismic, logging, and mud log data on the prediction of geomechanical parameters. The machine learning model, which is driven by data and physics, enables the prediction of 3D geomechanical parameters. This model is updated in real-time through the most recent drilling data, thus allowing for the pre-drilling prediction, monitoring while drilling and post-drilling evaluation of regional 3D geomechanical parameters. In addition, the key technical problems facing the intelligent prediction of geomechanical parameters are identified: (1) The transformation of unstructured data types should be minimized, the complexity of the data set should be reduced, and the consistency and comparability of the data should be ensured. (2) Multi-source data fusion should be conducted, and multi-source data sets, including seismic, logging, mud log, laboratory tests, and field test data, should be constructed. Subsequently, data processing and feature selection should be performed. (3) Machine learning models should be enhanced to improve performance, integrated models should be adopted to improve prediction accuracy, and mechanism models and domain knowledge should be integrated to enhance model robustness and explainability.


Key words: geomechanics; intelligent prediction; machine learning; rock mechanics; formation pressure; in-situ stress
收稿日期: 2024-06-28     
PACS:    
基金资助:四川省杰出青年科技人才项目(2020JDJQ0055)、四川省自然科学基金重点项目(2024NSFC0023) 联合资助
通讯作者: matianshou@126.com
引用本文:   
马天寿, 张东洋, 陆灯云, 谢祥锋, 刘阳. 地质力学参数智能预测技术进展与发展方向. 石油科学通报, 2024, 03: 365-382 MA Tianshou, ZHANG Dongyang, LU Dengyun, XIE Xiangfeng, LIU Yang. Progress and development direction of intelligent prediction technology of geomechanical parameters. Petroleum Science Bulletin, 2024, 03: 365-382.
链接本文:  
版权所有 2016 《石油科学通报》杂志社